Citation: | Zhou Wenchao, Ting Deng, Chen Peng, et al. Cavity ring-down method based performance characterization and defect analysis of large-aperture sampling optics[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240413 |
[1] |
Cook J. High-energy laser weapons since the early 1960s[J]. Optical Engineering, 2012, 52: 021007. doi: 10.1117/1.OE.52.2.021007
|
[2] |
Stewart A F, Bonsall L, Bettis J R, et al. Laser damage in multispectral optical coatings for the ABL[C]//Proceedings of SPIE 3578, Laser-Induced Damage in Optical Materials. 1999, 162-171.
|
[3] |
Yang Dekun, Wang Du, Huang Qiushi, et al. The development of laser-produced plasma EUV light source[J]. Chip, 2022, 1: 100019. doi: 10.1016/j.chip.2022.100019
|
[4] |
Mizoguchi H, Nakarai H, Usami Y, et al. High-power LPP-EUV source for semiconductor HVM: lithography and other applications[C]//Proceedings of SPIE 12292, International Conference on Extreme Ultraviolet Lithography 2022. 2022: 122920X.
|
[5] |
Wisoff P J. Diode pumped alkaline laser system: a high powered, low SWaP directed energy option for ballistic missile defense high-level summary[R]. LLNL-TR-730237, 2017.
|
[6] |
许晓军. 高能激光六十年: 回顾与展望[J]. 强激光与粒子束, 2020, 32:011007 doi: 10.11884/HPLPB202032.0480
Xu Xiaojun. Retrospect and prospect on 60-year development of high energy laser[J]. High Power Laser and Particle Beams, 2020, 32: 011007) doi: 10.11884/HPLPB202032.0480
|
[7] |
Zuo Jiexi, Lin Xuechun. High-power laser systems[J]. Laser & Photonics Review, 2022, 16: 2100741.
|
[8] |
Liu Zejin, Jin Xiaoxi, Su Rongtao, et al. Development status of high power fiber lasers and their coherent beam combination[J]. Science China Information Sciences, 2019, 62: 41301. doi: 10.1007/s11432-018-9742-0
|
[9] |
Ciofini M, Lapucci A, Lolli S. Diffractive optical components for high power laser beam sampling[J]. Journal of Optics A: Pure and Applied Optics, 2023, 5(3): 186-191.
|
[10] |
易亨瑜, 彭勇, 胡晓阳, 等. 大口径元件反射率的镜面扫描精密测量系统[J]. 强激光与粒子束, 2005, 17(11): 1601-1604
Yi Hengyu, Peng Yong, Hu Xiaoyang, et al. Precise measurement system for reflectivity scanning of large aperture components[J]. High Power Laser and Particle Beams, 2005, 17(11): 17(11): 1601-1604
|
[11] |
周文超, 魏千翯, 彭琛, 等. 2.7~3.0 μm波段高反镜反射率测量研究[J]. 强激光与粒子束, 2024, 36:011002 doi: 10.11884/HPLPB202436.240014
Zhou Wenchao, Wei Qianhe, Peng Chen, et al. Reflectivity measurement of highly reflective mirrors at spectral band of 2.7−3.0 μm[J]. High Power Laser and Particle Beams, 2024, 36: 011002) doi: 10.11884/HPLPB202436.240014
|
[12] |
ISO 13142: 2021, Optics and photonics – lasers and laser-related equipment – cavity ring-down method for high-reflectance and high-transmittance measurement[S].
|
[13] |
Xiao Shilei, Li Bincheng, Wang Jing. Precise measurements of super-high reflectance with cavity ring-down technique[J]. Metrologia, 2020, 57: 055002. doi: 10.1088/1681-7575/ab9d2d
|
[14] |
Han Yanling, Li Bincheng, Gao Lifeng, et al. Reflectivity mapping of large-aperture mirrors with cavity ringdown technique[J]. Applied Optics, 2017, 56(4): C35-C40. doi: 10.1364/AO.56.000C35
|
[15] |
Cui Hao, Li Bincheng, Xiao Shilei, at al. Simultaneous mapping of reflectance, transmittance and optical loss of highly reflective and anti-reflective coatings with two-channel cavity ring-down technique[J]. Optics Express, 2017, 25(5): 5807-5820. doi: 10.1364/OE.25.005807
|
[16] |
Gong Yuan, Li Bincheng, Han Yanling. Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity[J]. Applied Physics B, 2008, 93(2): 355-360. doi: 10.1007/s00339-008-4864-9
|