Citation: | Xu Kun, Chen Zhipeng, Lin Zhouyang, et al. Preliminary development and high-voltage lifetime testing of vertical photoconductive semiconductor switches based on Fe-doped β-Ga2O3[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240426 |
[1] |
Roy R, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the system Ga2O3-H2O[J]. Journal of the American Chemical Society, 1952, 74(3): 719-722. doi: 10.1021/ja01123a039
|
[2] |
Pearton S J, Yang Jiancheng, Cary P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5: 011301. doi: 10.1063/1.5006941
|
[3] |
Onuma T, Fujioka S, Yamaguchi T, et al. Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals[J]. Applied Physics Letters, 2013, 103: 041910. doi: 10.1063/1.4816759
|
[4] |
崔慧源. β-Ga2O3单晶导电机理研究与缺陷能级分析[D]. 上海: 上海大学, 2020: 1-11
Cui Huiyuan. Conduction mechanism study and defect level analysis of β-Ga2O3 single crystal[D]. Shanghai: Shanghai University, 2020: 1-11
|
[5] |
周磊簜, 陈亮, 卢星, 等. 氧化镓半导体核辐射探测器研究现状[J]. 现代应用物理, 2022, 13:010101 doi: 10.12061/j.issn.2095-6223.2022.010101
Zhou Leidang, Chen Liang, Lu Xing, et al. Research status of gallium oxide(Ga2O3) semiconductor nuclear radiation detectors[J]. Modern Applied Physics, 2022, 13: 010101 doi: 10.12061/j.issn.2095-6223.2022.010101
|
[6] |
Yan Xiaodong, Esqueda I S, Ma Jiahui, et al. High breakdown electric field in β-Ga2O3/graphene vertical barristor heterostructure[J]. Applied Physics Letters, 2018, 112: 032101. doi: 10.1063/1.5002138
|
[7] |
Pratiyush A S, Muazzam U U, Kumar S, et al. Optical float-zone grown bulk β-Ga2O3-based linear MSM array of UV-C photodetectors[J]. IEEE Photonics Technology Letters, 2019, 31(12): 923-926. doi: 10.1109/LPT.2019.2913286
|
[8] |
He Nuotian, Tang Huili, Liu Bo, et al. Ultra-fast scintillation properties of β-Ga2O3 single crystals grown by floating zone method[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 888: 9-12.
|
[9] |
Galazka Z, Irmscher K, Schewski R, et al. Czochralski-grown bulk β-Ga2O3 single crystals doped with mono-, di-, tri-, and tetravalent ions[J]. Journal of Crystal Growth, 2020, 529: 125297. doi: 10.1016/j.jcrysgro.2019.125297
|
[10] |
Jesenovec J, Varley J, Karcher S E, et al. Electronic and optical properties of Zn-doped β-Ga2O3 Czochralski single crystals[J]. Journal of Applied Physics, 2021, 129: 225702. doi: 10.1063/5.0050468
|
[11] |
Aida H, Nishiguchi K, Takeda H, et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method[J]. Japanese Journal of Applied Physics, 2008, 47: 8506. doi: 10.1143/JJAP.47.8506
|
[12] |
Masuya S, Sasaki K, Kuramata A, et al. Characterization of crystalline defects in β-Ga2O3 single crystals grown by edge-defined film-fed growth and halide vapor-phase epitaxy using synchrotron X-ray topography[J]. Japanese Journal of Applied Physics, 2019, 58: 055501. doi: 10.7567/1347-4065/ab0dba
|
[13] |
Mu Wenxiang, Jia Zhitai, Yin Yanru, et al. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method[J]. Journal of Alloys and Compounds, 2017, 714: 453-458. doi: 10.1016/j.jallcom.2017.04.185
|
[14] |
Zhang Shengnan, Lian Xiaozheng, Ma Yanchao, et al. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method[J]. Journal of Semiconductors, 2018, 39: 083003. doi: 10.1088/1674-4926/39/8/083003
|
[15] |
Hoshikawa K, Ohba E, Kobayashi T, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air[J]. Journal of Crystal Growth, 2016, 447: 36-41. doi: 10.1016/j.jcrysgro.2016.04.022
|
[16] |
董林鹏. 氧化镓材料特性及光电探测器研究[D]. 西安: 西安电子科技大学, 2019
Dong Linpeng. Study on characteristics of gallium oxide material and photodetectors[D]. Xi’an: Xidian University, 2019
|
[17] |
Yadav S, Dash S, Patra A K, et al. Effects of energetic ion irradiation on β-Ga2O3 thin films[J]. ECS Journal of Solid State Science and Technology, 2020, 9: 045015.
|
[18] |
Mauch D, Sullivan W, Bullick A, et al. High power lateral silicon carbide photoconductive semiconductor switches and investigation of degradation mechanisms[J]. IEEE transactions on plasma science, 2015, 43(6): 2021-2031.
|
[19] |
郝跃. 宽禁带与超宽禁带半导体器件新进展[J]. 科技导报, 2019, 37(3):58-61
Hao Yue. New progress in wide and ultra-wide bandgap semiconductor devices[J]. Science & Technology Review, 2019, 37(3): 58-61
|
[20] |
洪旭. β-Ga2O3基光导开关器件建模与实验研究[D]. 西安: 西安电子科技大学, 2022: 1-15
Hong Xu. Study on modeling and experimental of β-Ga2O3 photoconductive semiconductor switch[D]. Xi’an: Xidian University, 2022: 1-15
|
[21] |
Jayaraman S, Lee C H. Observation of two-photon conductivity in GaAs with nanosecond and picosecond light pulses[J]. Applied Physics Letters, 1972, 20(10): 392-395. doi: 10.1063/1.1653989
|
[22] |
Auston D H, Shank C V, LeFur P. Picosecond optical measurements of band-to-band Auger recombination of high-density plasmas in germanium[J]. Physical Review Letters, 1975, 35(15): 1022-1025. doi: 10.1103/PhysRevLett.35.1022
|
[23] |
LeFur P, Auston D H. A kilovolt picosecond optoelectronic switch and Pockel’s cell[J]. Applied Physics Letters, 1976, 28(1): 21-23. doi: 10.1063/1.88565
|
[24] |
严成锋, 施尔畏, 陈之战, 等. 超快大功率SiC光导开关的研究[J]. 无机材料学报, 2008, 23(3):425-428 doi: 10.3321/j.issn:1000-324X.2008.03.002
Yan Chengfeng, Shi Erwei, Chen Zhizhan, et al. Super fast and high power SiC photoconductive semiconductor switches[J]. Journal of Inorganic Materials, 2008, 23(3): 425-428 doi: 10.3321/j.issn:1000-324X.2008.03.002
|
[25] |
Dowling K M, Chatterjee B, Ghandiparsi S, et al. Evaluation of Fe-βGa2O3 for photoconductive semiconductor switching[J]. IEEE Transactions on Electron Devices, 2024, 71(3): 1535-1540. doi: 10.1109/TED.2024.3352528
|
[26] |
张乃霁. Fe: β-Ga2O3单晶的微观结构及光学电学性能研究[D]. 南宁: 广西大学, 2021: 1-13
Zhang Naiji. Study on optical and electrical properties of Fe: β-Ga2O3 single crystal and microstructure characteristic[D]. Nanning: Guangxi University, 2021: 1-13
|
[27] |
Zhang Hao, Tang Huili, He Nuotian, et al. Growth and physical characterization of high resistivity Fe: β-Ga2O3 crystals[J]. Chinese Physics B, 2020, 29: 087201.
|
[28] |
Hany I, Yang Ge, Chung C C. Fast X-ray detectors based on bulk β-Ga2O3 (Fe)[J]. Journal of Materials Science, 2020, 55(22): 9461-9469.
|
[29] |
Chu Xu, Meng Jin, Wang Haitao, et al. A backward-triggered 4H-SiC photoconductive semiconductor switch with planar electrode structure[J]. IEEE Transactions on Electron Devices, 2024, 71(7): 4253-4258.
|
[30] |
Seebauer E G, Kratzer M C. Charged point defects in semiconductors[J]. Materials Science and Engineering: R: Reports, 2006, 55(3/6): 57-149.
|
[31] |
迪特尔·K·施罗德, 徐友龙, 任巍, 等. 半导体材料与器件表征[M]. 3版. 西安: 西安交通大学出版社, 2017: 222-262
Schroder D K, Xu Youlong, Ren Wei, et al. Semiconductor material and device characterization[M]. 3rd ed. Xi’an: Xi’an Jiaotong University Press, 2017: 222-262
|
[32] |
Farzana E, Mauze A, Varley J B, et al. Influence of neutron irradiation on deep levels in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy[J]. APL Materials, 2019, 7: 121102. doi: 10.1063/1.5126463
|
[33] |
Irmscher K, Galazka Z, Pietsch M, et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Applied Physics, 2011, 110: 0637200.
|
[34] |
Farzana E, Chaiken M F, Blue T E, et al. Impact of deep level defects induced by high energy neutron radiation in β-Ga2O3[J]. APL Materials, 2019, 7: 022502. doi: 10.1063/1.5054606
|
[35] |
Arehart A R, Ringel S A. Electrical properties 3[M]//Higashiwaki M, Fujita S. Gallium Oxide: Materials Properties, Crystal Growth, and Devices. Cham: Springer, 2020: 421-441.
|
[36] |
宋涛. 氧化镓薄膜忆阻器的热稳定性研究[D]. 西安: 西安电子科技大学, 2023
Song Tao. Study on thermal stability of memristor based on gallium oxide film[D]. Xi’an: Xidian University, 2023
|
[37] |
Sun Qian, Guo Hui, Zheng Zhong, et al. Influence of pinch effect on the lifetime of a 2MW silicon carbide photoconductive semiconductor switch[J]. IEEE Transactions on Electron Devices, 2024, 71(3): 2018-2023. doi: 10.1109/TED.2024.3351100
|