Turn off MathJax
Article Contents
Zhou Ning, Zhan Ronglin, Yan Hongbin, et al. Design of switched-linear power supply[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240435
Citation: Zhou Ning, Zhan Ronglin, Yan Hongbin, et al. Design of switched-linear power supply[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240435

Design of switched-linear power supply

doi: 10.11884/HPLPB202537.240435
  • Received Date: 2024-12-20
  • Accepted Date: 2025-05-08
  • Rev Recd Date: 2025-05-08
  • Available Online: 2025-05-23
  • With the in-depth study of particle accelerator physics experiments, the requirements higher for beam quality have gradually increased. To obtain a magnetic field environment with extremely high stability and extremely low noise, a high-precision DC excitation power supply combining switching mode and linear mode was analyzed and designed. The front-end switching power supply provides a stable power source, and the back-end linear power supply is connected in series to control the linear amplification of the current for output. Based on the control loop of power supply current and tube voltage drop, the stability of the output current has been further improved through temperature compensation measures for key components. Through the modular design of the back-end linear power supply, the volume of the power supply has been reduced and the convenience of operation and maintenance has been improved. The measured results show that the long-term current stability for 8 h reaches 1.3×10−6, and the noise is extremely low.
  • loading
  • [1]
    夏佳文, 詹文龙, 魏宝文, 等. 兰州重离子加速器研究装置HIRFL[J]. 科学通报, 2016, 61(s1):467-477

    Xia Jiawen, Zhan Wenlong, Wei Baowen, et al. Heavy ions research facility in Lanzhou (HIRFL)[J]. Chinese Science Bulletin, 2016, 61(s1): 467-477
    [2]
    HIRFL Team. HIRFL operation and upgrade[J]. IMP & HIRFL Annual Report, 2003(1): 123-125.
    [3]
    唐靖宇, 王义芳, 尹全民. HIRFL改造中的加速器物理问题[J]. 原子核物理评论, 2000, 17(2):95-99 doi: 10.3969/j.issn.1007-4627.2000.02.007

    Tang Jingyu, Wang Yifang, Yin Quanmin. Problems of accelerator physics of upgrading HIFRL[J]. Nuclear Physics Review, 2000, 17(2): 95-99 doi: 10.3969/j.issn.1007-4627.2000.02.007
    [4]
    石磊太. HIRFL-SFC模拟及优化研究[D]. 兰州: 中国科学院研究生院(中国科学院近代物理研究所), 2014: 22-26

    Shi Leitai. Research on simulation and optimization of HIRFL-SFC[D]. Lanzhou: Graduate School of the Chinese Academy of Sciences (Institute of Modern Physics, Chinese Academy of Sciences), 2014: 22-26
    [5]
    Ye Feng, Yang Shangyun. Beam transmission efficiency of the HIRFL-SSC[J]. Chinese Physics C, 2013, 37: 037001. doi: 10.1088/1674-1137/37/3/037001
    [6]
    邓涵宇, 王猛, 张玉虎, 等. HIRFL-CSR上等时性质量测量进展[J]. 原子核物理评论, 2020, 37(3):301-308 doi: 10.11804/NuclPhysRev.37.2019CNPC40

    Deng Hanyu, Wang Meng, Zhang Yuhu, et al. Progress of isochronous mass spectrometry at HIRFL-CSR[J]. Nuclear Physics Review, 2020, 37(3): 301-308 doi: 10.11804/NuclPhysRev.37.2019CNPC40
    [7]
    颜鑫亮. 储存环上短寿命缺中子核素的精确质量测量[D]. 兰州: 中国科学院研究生院(中国科学院近代物理研究所), 2014: 74-89

    Yan Xinliang. Precision mass measurements of neutron-deficient nuclei in storage rings[D]. Lanzhou: Graduate School of the Chinese Academy of Sciences (Institute of Modern Physics, Chinese Academy of Sciences), 2014: 74-89
    [8]
    杜广华. 离子微束技术及其多学科应用[J]. 原子核物理评论, 2012, 29(4):371-378 doi: 10.11804/NuclPhysRev.29.04.371

    Du Guanghua. Techniques and multi-disciplinary applications of ion microbeam[J]. Nuclear Physics Review, 2012, 29(4): 371-378 doi: 10.11804/NuclPhysRev.29.04.371
    [9]
    欧恒恒, 燕宏斌, 张帅, 等. 兰州重离子回旋加速器主场电源改造[J]. 强激光与粒子束, 2022, 34:064003 doi: 10.11884/HPLPB202234.210454

    Ou Hengheng, Yan Hongbin, Zhang Shuai, et al. Reform of main power supply of the Lanzhou heavy ion cyclotron[J]. High Power Laser and Particle Beams, 2022, 34: 064003 doi: 10.11884/HPLPB202234.210454
    [10]
    姚云鹏. 双向全桥直流变换器的分析模型与关键技术的研究[D]. 南京: 东南大学, 2018: 17-29

    Yao Yunpeng. Study on the analysis model and key technology of the bidirectional full bridge DC-DC converter[D]. Nanjing: Southeast University, 2018: 17-29
    [11]
    胡作平, 李超. 三极管并联使用的分析[J]. 家电科技, 2015(2):74-76 doi: 10.3969/j.issn.1672-0172.2015.02.026

    Hu Zuoping, Li Chao. Analysis of transistor used in parallel[J]. Journal of Appliance Science & Technology, 2015(2): 74-76 doi: 10.3969/j.issn.1672-0172.2015.02.026
    [12]
    崔渊. 重离子加速器电源实时数字控制调节器研究[D]. 兰州: 中国科学院大学(中国科学院近代物理研究所), 2018: 27-30

    Cui Yuan. Development of real - time digital control regulator for heavy ion accelerator power supply[D]. Lanzhou: University of Chinese Academy of Sciences (Institute of Modern Physics, Chinese Academy of Sciences), 2018: 27-30
    [13]
    王农, 韩冰, 贺青, 等. 普朗克常数h测定系统中磁场线圈稳流源研究[J]. 电测与仪表, 2011, 48(7):1-6 doi: 10.3969/j.issn.1001-1390.2011.07.001

    Wang Nong, Han Bing, He Qing, et al. Special constant current source for magnetic field of measuring system of Planck’ s constant[J]. Electrical Measurement & Instrumentation, 2011, 48(7): 1-6 doi: 10.3969/j.issn.1001-1390.2011.07.001
    [14]
    童诗白, 华成英. 模拟电子技术基础[M]. 5版. 北京: 高等教育出版社, 2015: 67-70

    Tong Shibai, Hua Chengying. Fundamentals of analog electronic technology[M]. Beijing: Higher Education Press, 2015: 67-70
    [15]
    ONSEMI. NPN epitaxial silicon transistor FJL4315, 2SC5200[EB/OL]. [2024-12-22]. https://www.onsemi.cn/download/data-sheet/pdf/fjl4315-d.pdf.
    [16]
    McCarthy J, Farkas L, Wolff D. Very high precision current regulated power supplies for the Fermilab antiproton source[R]. Batavia, Illinois: Fermi National Accelerator Laboratory, 1985.
    [17]
    陈叶若溪. 应用非平衡电桥测量NTC热敏电阻的实验原理及误差分析[J]. 广西物理, 2018, 39(s1):36-38

    Chen Yeruoxi. Experimental principle and error analysis of NTC thermistor Measurement by non-equilibrium bridge[J]. Guangxi Physics, 2018, 39(s1): 36-38
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (39) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return