Turn off MathJax
Article Contents
Wang Hao, Yang Jing, Li Xuepeng, et al. 20.8 W, 9.9 mJ room-temperature compact 1030 nm nanosecond laser[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240444
Citation: Wang Hao, Yang Jing, Li Xuepeng, et al. 20.8 W, 9.9 mJ room-temperature compact 1030 nm nanosecond laser[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240444

20.8 W, 9.9 mJ room-temperature compact 1030 nm nanosecond laser

doi: 10.11884/HPLPB202537.240444
  • Received Date: 2024-12-13
  • Accepted Date: 2025-03-13
  • Rev Recd Date: 2025-04-16
  • Available Online: 2025-04-30
  • This paper reports on a room-temperature Yb:YAG rod laser with high power and high beam quality. The oscillator utilizes a moderately doped Yb:YAG rod crystal (Yb3+ concentration 2.0 at%) and employs quasi-continuous-wave end-pumping. At a repetition rate of 100 Hz, it achieved a 22 W linearly polarized laser output, with a slope efficiency of 53.5% and an optical-to-optical efficiency of 47.4%, while maintaining a beam quality of M2 = 1.22. Using acousto-optic Q-switching, the laser produced a 20.8 W pulse output with an energy of 9.9 mJ and a beam quality of M2 = 1.39, demonstrating the laser's capability for high-repetition-rate Q-switched pulse output.
  • loading
  • [1]
    Luhs W, Wellegehausen B, Goyal M. CW molecular iodine laser pumped with a low power DPSSL[J]. Applied Physics B, 2017, 123: 125.
    [2]
    Sekine T, Kurita T, Kurata M, et al. Development of a 100-J DPSSL as a laser processing platform in the TACMI consortium[J]. High Energy Density Physics, 2020, 36: 100800. doi: 10.1016/j.hedp.2020.100800
    [3]
    Smrž M, Novák O, Mužík J, et al. Advances in high-power, Ultrashort pulse DPSSL technologies at HiLASE[J]. Applied Sciences, 2017, 7: 1016. doi: 10.3390/app7101016
    [4]
    Brown D C, Tornegård S, Kolis J, et al. The application of cryogenic laser physics to the development of high average power ultra-short pulse lasers[J]. Applied Sciences, 2016, 6: 23. doi: 10.3390/app6010023
    [5]
    Nubbemeyer T, Kaumanns M, Ueffing M, et al. 1 kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 2017, 42(7): 1381-1384. doi: 10.1364/OL.42.001381
    [6]
    高清松, 周唐建, 尚建力, 等. 高效紧凑室温Yb: YAG板条全固态激光技术研究[J]. 强激光与粒子束, 2020, 32:121009

    Gao Qingsong, Zhou Tangjian, Shang Jianli, et al. High efficiency and compact Yb: YAG slab all-solid-state laser at room temperature[J]. High Power Laser and Particle Beams, 2020, 32: 121009
    [7]
    Xue Yinghong, Uemura S, Torizuka K. Optimal design for a diode-pumped high-power high-efficiency high-beam-quality laser[J]. Optics Communications, 2008, 281(21): 5389-5392. doi: 10.1016/j.optcom.2008.07.057
    [8]
    Jiang Hao, Chen Xiaoming, Xu Liu, et al. Quasi-continuous-wave, laser-diode-end-pumped Yb: YAG zigzag slab oscillator with high brightness at room temperature[J]. Applied Physics Express, 2017, 10: 022702. doi: 10.7567/APEX.10.022702
    [9]
    Bruesselbach H, Sumida D S. 69-W-average-power Yb: YAG laser[J]. Optics Letters, 1996, 21(7): 480-482. doi: 10.1364/OL.21.000480
    [10]
    Tokita S, Kawanaka J, Fujita M, et al. Efficient high-average-power operation of Q-switched cryogenic Yb: YAG laser oscillator[J]. Japanese Journal of Applied Physics, 2005, 44(12L): L1529-L1531. doi: 10.1143/JJAP.44.L1529
    [11]
    Kuznetsov I, Mukhin I, Palashov O, et al. Thin-rod Yb: YAG amplifiers for high average and peak power lasers[J]. Optics Letters, 2018, 43(16): 3941-3944. doi: 10.1364/OL.43.003941
    [12]
    Kuznetsov I, Chizhov S, Palashov O. Yb: YAG diverging beam amplifier with 20 mJ pulse energy and 1.5 kHz repetition rate[J]. Optics Letters, 2023, 48(5): 1292-1295. doi: 10.1364/OL.485714
    [13]
    Fries C, Weitz M, Theobald C, et al. Cavity-dumped Yb: YAG ceramic in the 20 W, 12 mJ range at 6.7 ns operating from 20 Hz to 5 kHz with fluorescence feedback control[J]. Applied Optics, 2016, 55(24): 6538-6546. doi: 10.1364/AO.55.006538
    [14]
    Zhang Guangyin, Li Ruixuan, Li Kui, et al. 12-mJ 1-kHz cryogenically cooled rod Yb: YAG regenerative amplifier[J]. Frontiers in Physics, 2024, 12: 1383634. doi: 10.3389/fphy.2024.1383634
    [15]
    Koechner W. Solid-state laser engineering[M]. New York: Springer, 2006.
    [16]
    Risk W P. Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses[J]. Journal of the Optical Society of America B, 1988, 5(7): 1412-1423. doi: 10.1364/JOSAB.5.001412
    [17]
    Liu Qiang, Fu Xing, Gong Mali, et al. Effects of the temperature dependence of absorption coefficients in edge-pumped Yb: YAG slab lasers[J]. Journal of the Optical Society of America B, 2007, 24(9): 2081-2089. doi: 10.1364/JOSAB.24.002081
    [18]
    Innocenzi M E, Yura H T, Fincher C L, et al. Thermal modeling of continuous-wave end-pumped solid-state lasers[J]. Applied Physics Letters, 1990, 56(19): 1831-1833. doi: 10.1063/1.103083
    [19]
    Lancaster D G, Dawes J M. Thermal-lens measurement of a quasi steady-state repetitively flashlamp-pumped Cr, Tm, Ho: YAG laser[J]. Optics & Laser Technology, 1998, 30(2): 103-108.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (7) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return