Citation: | Shi Peiling, He Qing. Research progress of microwave kinetic inductance detector applied to terahertz astronomical detection[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250001 |
[1] |
Hey J S. The evolution of radio astronomy[M]. New York: Science History Publications, 1973.
|
[2] |
Fleming J W. High-resolution submillimeter-wave Fourier-transform spectrometry of gases[J]. IEEE Transactions on Microwave Theory and Techniques, 1974, 22(12): 1023-1025. doi: 10.1109/TMTT.1974.1128419
|
[3] |
Huang Yi, Shen Yaochun, Wang Jiayou. From terahertz imaging to terahertz wireless communications[J]. Engineering, 2023, 22: 106-124. doi: 10.1016/j.eng.2022.06.023
|
[4] |
Sizov F. Terahertz radiation detectors: the state-of-the-art[J]. Semiconductor Science and Technology, 2018, 33: 123001. doi: 10.1088/1361-6641/aae473
|
[5] |
Rogalski A, Sizov F. Terahertz detectors and focal plane arrays[J]. Opto-Electronics Review, 2011, 19(3): 346-404.
|
[6] |
潘晓凯, 姜梦杰, 王东, 等. 红外-太赫兹光电探测器应用及前沿变革趋势[J]. 量子电子学报, 2023, 40(2):217-237 doi: 10.3969/j.issn.1007-5461.2023.02.005
Pan Xiaokai, Jiang Mengjie, Wang Dong, et al. Application and frontier trend of infrared-terahertz photoelectric detector[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 217-237 doi: 10.3969/j.issn.1007-5461.2023.02.005
|
[7] |
Widicus Weaver S L. Millimeterwave and submillimeterwave laboratory spectroscopy in support of observational astronomy[J]. Annual Review of Astronomy and Astrophysics, 2019, 57(1): 79-112. doi: 10.1146/annurev-astro-091918-104438
|
[8] |
Horowitz G. Organic field-effect transistors[J]. Advanced Materials, 1998, 10(5): 365-377. doi: 10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
|
[9] |
Jansen C, Wietzke S, Peters O, et al. Terahertz imaging: applications and perspectives[J]. Applied Optics, 2010, 49(19): E48-E57. doi: 10.1364/AO.49.000E48
|
[10] |
Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging–modern techniques and applications[J]. Laser & Photonics Reviews, 2011, 5(1): 124-166.
|
[11] |
Stacey G J. THz low resolution spectroscopy for astronomy[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 241-255. doi: 10.1109/TTHZ.2011.2159649
|
[12] |
贺青, 李栋, 谷立, 等. 基于里德堡原子的无线电技术研究进展[J]. 强激光与粒子束, 2024, 36:079001 doi: 10.11884/HPLPB202436.240061
He Qing, Li Dong, Gu Li, et al. Research progress in radio technology based on Rydberg atoms[J]. High Power Laser and Particle Beams, 2024, 36: 079001 doi: 10.11884/HPLPB202436.240061
|
[13] |
贺青, 李栋, 罗思源, 等. 超宽带里德堡原子天线技术研究进展[J]. 广西师范大学学报(自然科学版), 2025, 43(2):1-19
He Qing, Li Dong, Luo Siyuan, et a1. Research progress in ultra-wideband Rydberg atomic antenna technology[J]. Journal of Guangxi Normal University (Natural Science Edition), 2025, 43(2): 1-19
|
[14] |
Walker C K. Terahertz astronomy[M]. Boca Raton: CRC Press, 2015.
|
[15] |
任远, 缪巍, 史生才. 超导探测器与太赫兹天文应用[J]. 物理, 2023, 52(4):255-265 doi: 10.7693/wl20230405
Ren Yuan, Miao Wei, Shi Shengcai. Superconducting detectors and their applications in terahertz astronomy[J]. Physics, 2023, 52(4): 255-265 doi: 10.7693/wl20230405
|
[16] |
Hughes D H, Serjeant S, Dunlop J, et al. High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey[J]. Nature, 1998, 394(6690): 241-247. doi: 10.1038/28328
|
[17] |
Brogan C L, Pérez L M, Hunter T R, et al. The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region[J]. The Astrophysical Journal Letters, 2015, 808: L3. doi: 10.1088/2041-8205/808/1/L3
|
[18] |
Hashimoto T, Laporte N, Mawatari K, et al. The onset of star formation 250 million years after the Big Bang[J]. Nature, 2018, 557(7705): 392-395. doi: 10.1038/s41586-018-0117-z
|
[19] |
Akiyama K, Alberdi A, Alef W, et al. First M87 event horizon telescope results. IV. Imaging the central supermassive black hole[J]. The Astrophysical Journal Letters, 2019, 875: L4. doi: 10.3847/2041-8213/ab0e85
|
[20] |
Day P K, Leduc H G, Mazin B A, et al. A broadband superconducting detector suitable for use in large arrays[J]. Nature, 2003, 425(6960): 817-821. doi: 10.1038/nature02037
|
[21] |
Brien T L R, Ade P A R, Barry P S, et al. MUSCAT: the Mexico-UK sub-millimetre camera for AsTronomy[C]//Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX. 2018: 173-181.
|
[22] |
Austermann J E, Beall J A, Bryan S A, et al. Millimeter-wave polarimeters using kinetic inductance detectors for TolTEC and beyond[J]. Journal of Low Temperature Physics, 2018, 193(3/4): 120-127.
|
[23] |
Takekoshi T, Karatsu K, Suzuki J, et al. DESHIMA on ASTE: on-sky responsivity calibration of the integrated superconducting spectrometer[J]. Journal of Low Temperature Physics, 2020, 199(1/2): 231-239.
|
[24] |
Baryshev A M, Baselmans J J A, Yates S J C, et al. Large format antenna coupled micorwave kinetic iinductance detector arrays for radioastronomy[C]//2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). 2014: 1.
|
[25] |
Duan Ran, Khaikin V, Lebedev M, et al. Toward Eurasian SubMillimeter Telescopes: the concept of multicolor subTHz MKID-array demo camera MUSICAM and its instrumental testing[C]//2020 7th All-Russian Microwave Conference (RMC). 2020: 41-46.
|
[26] |
Isopi G, Cacciotti F, Paiella A, et al. MISTRAL: technical commissioning and first W-band photons from the Sardinia Radio Telescope[C]//Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII. 2024: 116-125.
|
[27] |
Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature Materials, 2012, 11(10): 865-871. doi: 10.1038/nmat3417
|
[28] |
Chen S L, Chang Y C, Zhang Cheng, et al. Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite[J]. Nature Photonics, 2014, 8(7): 537-542. doi: 10.1038/nphoton.2014.96
|
[29] |
Coppinger M, Sustersic N A, Kolodzey J, et al. Sensitivity of a vanadium oxide uncooled microbolometer array for terahertz imaging[J]. Optical Engineering, 2011, 50: 053206. doi: 10.1117/1.3574066
|
[30] |
Lee A W, Hu Qing. Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array[J]. Optics Letters, 2005, 30(19): 2563-2565. doi: 10.1364/OL.30.002563
|
[31] |
Han Ruonan, Zhang Yaming, Kim Y, et al. 280GHz and 860GHz image sensors using Schottky-barrier diodes in 0.13 μm digital CMOS[C]//2012 IEEE International Solid-State Circuits Conference. 2012: 254-256.
|
[32] |
Otsuji T. Trends in the research of modern terahertz detectors: plasmon detectors[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(6): 1110-1120.
|
[33] |
Huhn A K, Spickermann G, Ihring A, et al. Uncooled antenna-coupled terahertz detectors with 22 μs response time based on BiSb/Sb thermocouples[J]. Applied Physics Letters, 2013, 102: 121102. doi: 10.1063/1.4798369
|
[34] |
张鹏, 曹乾涛, 董航荣, 等. 大面元太赫兹热释电探测器[J]. 红外与激光工程, 2020, 49:20190338 doi: 10.3788/irla.30_2019-0338
Zhang Peng, Cao Qiantao, Dong Hangrong, et al. Large area terahertz pyroelectric detector[J]. Infrared and Laser Engineering, 2020, 49: 20190338 doi: 10.3788/irla.30_2019-0338
|
[35] |
梁志清, 刘子骥, 蒋亚东, 等. 基于超薄钽酸锂晶体材料高响应太赫兹探测器[J]. 红外与毫米波学报, 2016, 35(5):520-524,616 doi: 10.11972/j.issn.1001-9014.2016.05.002
Liang Zhiqing, Liu Ziji, Jiang Yadong, et al. High responsivity of terahertz detector based on ultra-thin LiTaO3 crystal material[J]. Journal of Infrared and Millimeter Waves, 2016, 35(5): 520-524,616 doi: 10.11972/j.issn.1001-9014.2016.05.002
|
[36] |
王军, 蒋亚东. 室温微测辐射热计太赫兹探测阵列技术研究进展(特邀)[J]. 红外与激光工程, 2019, 48:0102001 doi: 10.3788/IRLA201948.0102001
Wang Jun, Jiang Yadong. Research development about room temperature terahertz detector array technology with microbolometer structure (invited)[J]. Infrared and Laser Engineering, 2019, 48: 0102001 doi: 10.3788/IRLA201948.0102001
|
[37] |
Tucker J R, Feldman M J. Quantum detection at millimeter wavelengths[J]. Reviews of Modern Physics, 1985, 57(4): 1055-1113. doi: 10.1103/RevModPhys.57.1055
|
[38] |
Miao W, Zhang W, Zhong J Q, et al. Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges[J]. Applied Physics Letters, 2014, 104: 052605. doi: 10.1063/1.4864763
|
[39] |
Miao W, Zhang W, Zhou K M, et al. Investigation of the performance of NbN superconducting HEB mixers of different critical temperatures[J]. IEEE Transactions on Applied Superconductivity, 2017, 27: 2200304.
|
[40] |
Hijmering R A, Khosropanah P, Ridder M, et al. Effect of magnetic fields on TiAu TES bolometers for the SAFARI instrument on the SPICA FIR telescope[J]. Journal of Low Temperature Physics, 2012, 167(3/4): 242-247.
|
[41] |
Rosenberg D, Lita A E, Miller A J, et al. Noise-free high-efficiency photon-number-resolving detectors[J]. Physical Review A, 2005, 71: 061803. doi: 10.1103/PhysRevA.71.061803
|
[42] |
史生才, 李婧, 张文, 等. 超高灵敏度太赫兹超导探测器[J]. 物理学报, 2015, 64:228501 doi: 10.7498/aps.64.228501
Shi Shengcai, Li Jing, Zhang Wen, et al. Terahertz high-sensitivity superconducting detectors[J]. Acta Physica Sinica, 2015, 64: 228501 doi: 10.7498/aps.64.228501
|
[43] |
Zmuidzinas J. Superconducting microresonators: physics and applications[J]. Annual Review of Condensed Matter Physics, 2012, 3(1): 169-214. doi: 10.1146/annurev-conmatphys-020911-125022
|
[44] |
Gao Jiansong. The physics of superconducting microwave resonators[D]. Pasadena: California Institute of Technology, 2008.
|
[45] |
He Q, Ouyang P, Gao H, et al. Low-loss superconducting aluminum microwave coplanar waveguide resonators on sapphires for the qubit readouts[J]. Superconductor Science and Technology, 2022, 35: 065017. doi: 10.1088/1361-6668/ac6a1d
|
[46] |
Shi Qing, Li Jing, Zhi Qiang, et al. Terahertz superconducting kinetic inductance detectors demonstrating photon-noise-limited performance and intrinsic generation-recombination noise[J]. Science China Physics, Mechanics & Astronomy, 2022, 65: 239511.
|
[47] |
Baselmans J J A, Bueno J, Yates S J C, et al. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors[J]. Astronomy & Astrophysics, 2017, 601: A89.
|
[48] |
Mazin B A, Meeker S R, Strader M J, et al. ARCONS: a 2024 pixel optical through near-IR cryogenic imaging spectrophotometer[J]. Publications of the Astronomical Society of the Pacific, 2013, 125(933): 1348-1361. doi: 10.1086/674013
|
[49] |
Barry P S, Shirokoff E, Kovács A, et al. Electromagnetic design for SuperSpec: a lithographically-patterned millimetre-wave spectrograph[C]//Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI. 2012.
|
[50] |
Karkare K S, Barry P S, Bradford C M, et al. Full-array noise performance of deployment-grade SuperSpec mm-wave on-chip spectrometers[J]. Journal of Low Temperature Physics, 2020, 199(3/4): 849-857.
|
[51] |
Endo A, Karatsu K, Tamura Y, et al. First light demonstration of the integrated superconducting spectrometer[J]. Nature Astronomy, 2019, 3(11): 989-996. doi: 10.1038/s41550-019-0850-8
|
[52] |
Taniguchi A, Bakx T J L C, Baselmans J J A, et al. DESHIMA 2.0: development of an integrated superconducting spectrometer for science-grade astronomical observations[J]. Journal of Low Temperature Physics, 2022, 209(3/4): 278-286.
|
[53] |
Thomas C N, Blundell R, Glowacka D, et al. Progress on the Cambridge emission line surveyor (CAMELS)[C]//26th International Symposium on Space Terahertz Technology. 2015: M4.
|
[54] |
Grimes P K, Asada K, Blundell R, et al. Instrumentation for single-dish observations with The Greenland Telescope[C]//Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. 2014: 602-612.
|
[55] |
Cataldo G, Barrentine E M, Bulcha B T, et al. Second-generation design of micro-spec: a medium-resolution, submillimeter-wavelength spectrometer-on-a-chip[J]. Journal of Low Temperature Physics, 2018, 193(5/6): 923-930.
|
[56] |
Cataldo G, Barrentine E M, Bulcha B T, et al. Second-generation Micro-Spec: a compact spectrometer for far-infrared and submillimeter space missions[J]. Acta Astronautica, 2019, 162: 155-159. doi: 10.1016/j.actaastro.2019.06.012
|
[57] |
Ade P A R, Anderson C J, Barrentine E M, et al. The experiment for cryogenic large-aperture intensity mapping (EXCLAIM)[J]. Journal of Low Temperature Physics, 2020, 199(3/4): 1027-1037.
|
[58] |
Switzer E R, Barrentine E M, Cataldo G, et al. Experiment for cryogenic large-aperture intensity mapping: instrument design[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2021, 7: 044004.
|
[59] |
Pullen A R, Breysse P C, Oxholm T, et al. Extragalactic science with the experiment for cryogenic large-aperture intensity mapping[J]. Monthly Notices of the Royal Astronomical Society, 2023, 521(4): 6124-6142. doi: 10.1093/mnras/stad916
|
[60] |
Bryan S, Aguirre J, Che G, et al. WSPEC: a waveguide filter-bank focal plane array spectrometer for millimeter wave astronomy and cosmology[J]. Journal of Low Temperature Physics, 2016, 184(1/2): 114-122.
|
[61] |
Hubmayr J, Beall J A, Becker D, et al. Dual-polarization-sensitive kinetic inductance detectors for balloon-borne sub-millimeter polarimetry[J]. Journal of Low Temperature Physics, 2014, 176(3/4): 490-496.
|
[62] |
Moncelsi L, Ade P A R, Angilè F E, et al. Empirical modelling of the BLASTPol achromatic half-wave plate for precision submillimetre polarimetry[J]. Monthly Notices of the Royal Astronomical Society, 2014, 437(3): 2772-2789. doi: 10.1093/mnras/stt2090
|
[63] |
Galitzki N, Ade P A R, Angilè F E, et al. The balloon-borne large aperture submillimeter telescope for polarimetry-BLASTPol: performance and results from the 2012 Antarctic flight[C]//Ground-based and Airborne Telescopes V. 2014: 257-267.
|
[64] |
Gandilo N. The balloon-borne large aperture submillimeter telescope for Polarimetry (BLAST-Pol): instrument and 2010 Science Campaign[D]. University of Pennsylvania, 2013.
|
[65] |
Galitzki N, Ade P, Angilè F E, et al. Instrumental performance and results from testing of the BLAST-TNG receiver, submillimeter optics, and MKID detector arrays[C]//Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII. 2016: 108-118.
|
[66] |
Galitzki N, Ade P A R, Angilè F E, et al. The next generation BLAST experiment[J]. Journal of Astronomical Instrumentation, 2014, 3: 1440001. doi: 10.1142/S2251171714400017
|
[67] |
Brien T L R, Ade P, Barry P S, et al. Performance and deployment status of MUSCAT: a 1500-pixel LEKID-based mm-wave camera for the large millimeter telescope[C]//2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). 2020: 1.
|
[68] |
Rowe S, Tapia M, Barry P S, et al. The MUSCAT readout electronics backend: design and pre-deployment performance[J]. Journal of Low Temperature Physics, 2023, 211(5/6): 289-301.
|
[69] |
Ade P A R, Aghanim N, Arnaud M, et al. Planck intermediate results: XVI. Profile likelihoods for cosmological parameters[J]. Astronomy & Astrophysics, 2014, 566: A54.
|
[70] |
Ade P A R, Aghanim N, Arnaud M, et al. Planck 2015 results: XIII. Cosmological parameters[J]. Astronomy & Astrophysics, 2016, 594: A13.
|
[71] |
Mccarrick H, Jones G, Johnson B R, et al. Design and performance of dual-polarization lumped-element kinetic inductance detectors for millimeter-wave polarimetry[J]. Astronomy & Astrophysics, 2018, 610: A45.
|
[72] |
de Bernardis P, Ade P A R, Baselmans J J A, et al. Exploring cosmic origins with CORE: the instrument[J]. Journal of Cosmology and Astroparticle Physics, 2018, 2018: 015.
|
[73] |
Johnson B R, Ade P A R, Araujo D, et al. The detector system for the stratospheric kinetic inductance polarimeter (SKIP)[J]. Journal of Low Temperature Physics, 2014, 176(5/6): 741-748.
|
[74] |
Monfardini A, Baselmans J, Benoit A, et al. Lumped element kinetic inductance detectors for space applications[C]//Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII. 2016: 142-149.
|
[75] |
Lee K, Choi J, Génova-Santos R T, et al. GroundBIRD: a CMB polarization experiment with MKID arrays[J]. Journal of Low Temperature Physics, 2020, 200(5/6): 384-391.
|
[76] |
Nagasaki T, Choi J, Génova-Santos R T, et al. GroundBIRD: observation of CMB polarization with a rapid scanning and MKIDs[J]. Journal of Low Temperature Physics, 2018, 193(5/6): 1066-1074.
|
[77] |
Hui H, Ade P A R, Ahmed Z, et al. BICEP Array: a multi-frequency degree-scale CMB polarimeter[C]//Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX. 2018: 75-89.
|
[78] |
Gao Jiansong, Daal M, Vayonakis A, et al. Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators[J]. Applied Physics Letters, 2008, 92: 152505. doi: 10.1063/1.2906373
|
[79] |
Vissers M R, Austermann J E, Malnou M, et al. Ultrastable millimeter-wave kinetic inductance detectors[J]. Applied Physics Letters, 2020, 116: 032601. doi: 10.1063/1.5138122
|
[80] |
Schlaerth J A, Czakon N G, Day P K, et al. MKID multicolor array status and results from DemoCam[C]//Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V. 2010: 59-69.
|
[81] |
Schlaerth J, Vayonakis A, Day P, et al. A millimeter and submillimeter kinetic inductance detector camera[J]. Journal of Low Temperature Physics, 2008, 151(3/4): 684-689.
|
[82] |
Glenn J, Day P K, Ferry M, et al. A microwave kinetic inductance camera for sub/millimeter astrophysics[C]//Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV. 2008: 117-126.
|
[83] |
Golwala S R, Bockstiegel C, Brugger S, et al. Status of MUSIC, the MUltiwavelength sub/millimeter inductance camera[C]//Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI. 2012: 33-53.
|
[84] |
Maloney P R, Czakon N G, Day P K, et al. MUSIC for sub/millimeter astrophysics[C]//Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V. 2010: 124-134.
|
[85] |
Schlaerth J A, Czakon N G, Day P K, et al. The status of music: a multicolor sub/millimeter MKID instrument[J]. Journal of Low Temperature Physics, 2012, 167(3/4): 347-353.
|
[86] |
Monfardini A, Benoit A, Bideaud A, et al. The Néel IRAM KID Arrays (NIKA)[J]. Journal of Low Temperature Physics, 2012, 167(5/6): 834-839.
|
[87] |
Monfardini A, Adam R, Adane A, et al. Latest NIKA results and the NIKA-2 project[J]. Journal of Low Temperature Physics, 2014, 176(5/6): 787-795.
|
[88] |
Ritacco A, Macías-Pérez J F, Ponthieu N, et al. NIKA 150 GHz polarization observations of the Crab nebula and its spectral energy distribution[J]. Astronomy & Astrophysics, 2018, 616: A35.
|
[89] |
Adam R, Hahn O, Ruppin F, et al. Substructure and merger detection in resolved NIKA Sunyaev-Zel’dovich images of distant clusters[J]. Astronomy & Astrophysics, 2018, 614: A118.
|
[90] |
Adam R, Bartalucci I, Pratt G W, et al. Mapping the kinetic Sunyaev-Zel’dovich effect toward MACS J0717.5+3745 with NIKA[J]. Astronomy & Astrophysics, 2017, 598: A115.
|
[91] |
Adam R, Comis B, Bartalucci I, et al. High angular resolution Sunyaev-Zel’dovich observations of MACS J1423.8+2404 with NIKA: multiwavelength analysis[J]. Astronomy & Astrophysics, 2016, 586: A122.
|
[92] |
Calvo M, Benoît A, Catalano A, et al. The NIKA2 instrument, a dual-band kilopixel KID array for millimetric astronomy[J]. Journal of Low Temperature Physics, 2016, 184(3/4): 816-823.
|
[93] |
Adam R, Adane A, Ade P A R, et al. The NIKA2 large-field-of-view millimetre continuum camera for the 30 m IRAM telescope[J]. Astronomy & Astrophysics, 2018, 609: A115.
|
[94] |
Catalano A, Adam R, Ade P A R, et al. The NIKA2 instrument at 30-m IRAM telescope: performance and results[J]. Journal of Low Temperature Physics, 2018, 193(5/6): 916-922.
|
[95] |
Katsioli S, Xilouris E M, Kramer C, et al. The stratification of ISM properties in the edge-on galaxy NGC 891 revealed by NIKA2[J]. Astronomy & Astrophysics, 2023, 679: A7.
|
[96] |
Reyes N, Mayorga I C, Grutzeck G, et al. Characterization of widefield THz optics using phase shifting interferometry[J]. IEEE Transactions on Terahertz Science and Technology, 2023, 13(6): 614-621. doi: 10.1109/TTHZ.2023.3320554
|
[97] |
Davis K. Instrument design and radiation pattern testing for terahertz astronomical instruments[D]. Tempe: Arizona State University, 2018.
|
[98] |
Fasano A, Aguiar M, Benoit A, et al. The KISS experiment[J]. Journal of Low Temperature Physics, 2020, 199(1/2): 529-536.
|
[99] |
Fasano A, Aguiar M, Benoit A, et al. KISS: a spectrometric imager for millimetre cosmology[C]//EPJ Web of Conferences. 2020: 00010.
|
[100] |
Ade P, Aravena M, Barria E, et al. A wide field-of-view low-resolution spectrometer at APEX: instrument design and scientific forecast[J]. Astronomy & Astrophysics, 2020, 642: A60.
|
[101] |
Fasano A, Ade P, Aravena M, et al. CONCERTO: instrument and status[C]//EPJ Web of Conferences. 2024: 00018.
|
[102] |
Hu W, Beelen A, Lagache G, et al. CONCERTO at APEX on-sky performance in continuum[J]. Astronomy & Astrophysics, 2024, 689: A20.
|
[103] |
Choi S K, Austermann J, Basu K, et al. Sensitivity of the Prime-Cam instrument on the CCAT-prime telescope[J]. Journal of Low Temperature Physics, 2020, 199(3/4): 1089-1097.
|
[104] |
Huber Z B, Lin L T, Vavagiakis E M, et al. CCAT: Prime-Cam optics overview and status update[C]//Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII. 2024: 784-793.
|
[105] |
Vavagiakis E M, Ahmed Z, Ali A, et al. Prime-Cam: a first-light instrument for the CCAT-prime telescope[C]//Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX. 2018: 375-390.
|
[106] |
Yang H, Kulesa C A, Walker C K, et al. Exceptional terahertz transparency and stability above Dome A, Antarctica[J]. Publications of the Astronomical Society of the Pacific, 2010, 122: 490. doi: 10.1086/652276
|
[107] |
Shi Shengcai, Li Jing, Lin Zhenhui, et al. Development of an MKIDs-based THz superconducting imaging array (TeSIA) at 0.85 THz[J]. Journal of Low Temperature Physics, 2018, 193(3/4): 128-133.
|
[108] |
Liu X, Guo W, Wang Y, et al. Cryogenic LED pixel-to-frequency mapper for kinetic inductance detector arrays[J]. Journal of Applied Physics, 2017, 122: 034502. doi: 10.1063/1.4994170
|
[109] |
Liu X, Guo W, Wang Y, et al. Superconducting micro-resonator arrays with ideal frequency spacing[J]. Applied Physics Letters, 2017, 111: 252601. doi: 10.1063/1.5016190
|
[110] |
Guo W, Liu X, Wang Y, et al. Counting near infrared photons with microwave kinetic inductance detectors[J]. Applied Physics Letters, 2017, 110: 212601. doi: 10.1063/1.4984134
|
[111] |
Dai X, Wang H, Wang Y, et al. Photon number-resolving aluminum kinetic inductance detectors[J]. Applied Physics Letters, 2025, 126: 012602. doi: 10.1063/5.0234649
|
[112] |
Morozov D, Doyle S M, Banerjee A, et al. Design and characterisation of titanium nitride subarrays of kinetic inductance detectors for passive terahertz imaging[J]. Journal of Low Temperature Physics, 2018, 193(3/4): 196-202.
|
[113] |
Rowe S, Pascale E, Doyle S, et al. A passive terahertz video camera based on lumped element kinetic inductance detectors[J]. Review of Scientific Instruments, 2016, 87: 033105. doi: 10.1063/1.4941661
|
[114] |
O'brien K, Mazin B, Mchugh S, et al. ARCONS: a highly multiplexed superconducting UV-to-near-IR camera[J]. Proceedings of the International Astronomical Union, 2011, 7(S285): 385-388. doi: 10.1017/S1743921312001159
|
[115] |
Meeker S R, Mazin B A, Walter A B, et al. DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy[J]. Publications of the Astronomical Society of the Pacific, 2018, 130: 065001. doi: 10.1088/1538-3873/aab5e7
|
[116] |
Walter A B, Fruitwala N, Steiger S, et al. The MKID Exoplanet Camera for Subaru SCExAO[J]. Publications of the Astronomical Society of the Pacific, 2020, 132: 125005. doi: 10.1088/1538-3873/abc60f
|