Turn off MathJax
Article Contents
Shi Ying, Zhang Manzhou, Li Deming, et al. Design and validation of a proton beam line based on a rapid-cycling synchrotron for Flash radiation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250003
Citation: Shi Ying, Zhang Manzhou, Li Deming, et al. Design and validation of a proton beam line based on a rapid-cycling synchrotron for Flash radiation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250003

Design and validation of a proton beam line based on a rapid-cycling synchrotron for Flash radiation

doi: 10.11884/HPLPB202537.250003
  • Received Date: 2025-01-06
  • Accepted Date: 2025-04-07
  • Rev Recd Date: 2025-04-08
  • Available Online: 2025-06-17
  • We design a proton beamline based on a rapid-cycling synchrotron for Flash radiation with ultra-high dose rate. Because proton beams can be extracted within hundreds of nanoseconds in the rapid-cycling synchrotron, its energy may be altered from one cycle to the next with different extraction time. The intended beamline system can realize layer stacking irradiation at an instantaneous dose rate of 107 Gy/s. Each of longitudinal layer requires a different beam intensity. The target is divided longitudinally into different layers, each of which needs a different beam energy, in order to produce a uniform irradiation field. The system, including a double scatter system, a range compensator, a ripple filter, and a multi-leaf collimator to maximize proton fluence into the target, is simulated using the Monte Carlo software FLUKA. Three different kinds of ripple filters are built in the low, medium, and high energy zones based on the original Bragg peaks in order to decrease the number of energy layers and shorten the total irradiation duration. These filters transform the spike region into a Gaussian distribution with flat expansion areas of 2 cm, 6 cm, and 20 cm, respectively. Combining the rapid-cycling synchrotron with the layer stacking irradiation provides a novel method for realizing Flash proton irradiation, which delivers an ultra-high dose rate to the target.
  • loading
  • [1]
    Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice[J]. Science Translational Medicine, 2014, 6: 245ra93.
    [2]
    Allen B D, Alaghband Y, Kramár E A, et al. Elucidating the neurological mechanism of the Flash effect in juvenile mice exposed to hypofractionated radiotherapy[J]. Neuro-Oncology, 2023, 25(5): 927-939. doi: 10.1093/neuonc/noac248
    [3]
    Ashraf M R, Melemenidis S, Liu K, et al. Multi-Institutional audit of FLASH and conventional dosimetry with a 3D printed anatomically realistic mouse phantom[J]. International Journal of Radiation Oncology · Biology · Physics, 2024, 120(1): 287-300.
    [4]
    Zhang Qixian, Gerweck L E, Cascio E, et al. Proton FLASH effects on mouse skin at different oxygen tensions[J]. Physics in Medicine & Biology, 2023, 68: 055010.
    [5]
    Montay-Gruel P, Petersson K, Jaccard M, et al. Irradiation in a flash: unique sparing of memory in mice after whole brain irradiation with dose rates above 100Gy/s[J]. Radiotherapy and Oncology, 2017, 124(3): 365-369. doi: 10.1016/j.radonc.2017.05.003
    [6]
    Montay-Gruel P, Acharya M M, Petersson K, et al. Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(22): 10943-10951.
    [7]
    Röch T F, SZABÓZ, Haffa D, et al. A feasibility study of zebrafish embryo irradiation with laser-accelerated protons[J]. Review of Scientific Instruments, 2020, 91: 063303. doi: 10.1063/5.0008512
    [8]
    Beyreuther E, Brand M, Hans S, et al. Feasibility of proton FLASH effect tested by zebrafish embryo irradiation[J]. Radiotherapy and Oncology, 2019, 139: 46-50. doi: 10.1016/j.radonc.2019.06.024
    [9]
    Vozenin M C, De Fornel P, Petersson K, et al. The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients[J]. Clinical Cancer Research, 2019, 25(1): 35-42. doi: 10.1158/1078-0432.CCR-17-3375
    [10]
    Bourhis J, Sozzi W J, Jorge P G, et al. Treatment of a first patient with FLASH-radiotherapy[J]. Radiotherapy and Oncology, 2019, 139: 18-22. doi: 10.1016/j.radonc.2019.06.019
    [11]
    Mascia A E, Daugherty E C, Zhang Yongbin, et al. Proton FLASH radiotherapy for the treatment of symptomatic bone metastases: the FAST-01 nonrandomized trial[J]. JAMA Oncology, 2023, 9(1): 62-69. doi: 10.1001/jamaoncol.2022.5843
    [12]
    Daugherty E C, Zhang Y, Xiao Z, et al. FLASH radiotherapy for the treatment of symptomatic bone metastases in the thorax (FAST-02): protocol for a prospective study of a novel radiotherapy approach[J]. Radiation Oncology, 2024, 19: 34. doi: 10.1186/s13014-024-02419-4
    [13]
    Hughes J R, Parsons J L. FLASH radiotherapy: current knowledge and future insights using proton-beam therapy[J]. International Journal of Molecular Sciences, 2020, 21: 6492. doi: 10.3390/ijms21186492
    [14]
    Borghini A, Labate L, Piccinini S, et al. FLASH radiotherapy: expectations, challenges, and current knowledge[J]. International Journal of Molecular Sciences, 2024, 25: 2546. doi: 10.3390/ijms25052546
    [15]
    Vozenin M C, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy[J]. Nature Reviews Clinical Oncology, 2022, 19(12): 791-803. doi: 10.1038/s41571-022-00697-z
    [16]
    Jolly S, Owen H, Schippers M, et al. Technical challenges for FLASH proton therapy[J]. Physica Medica, 2020, 78: 71-82. doi: 10.1016/j.ejmp.2020.08.005
    [17]
    Manti L, Perozziello F M, Borghesi M, et al. The radiobiology of laser-driven particle beams: focus on sub-lethal responses of normal human cells[J]. Journal of Instrumentation, 2017, 12: C03084. doi: 10.1088/1748-0221/12/03/C03084
    [18]
    Bayart E, Flacco A, Delmas O, et al. Fast dose fractionation using ultra-short laser accelerated proton pulses can increase cancer cell mortality, which relies on functional PARP1 protein[J]. Scientific Reports, 2019, 9: 10132. doi: 10.1038/s41598-019-46512-1
    [19]
    Bin Jianhui, Obst-Huebl L, Mao Jianhua, et al. A new platform for ultra-high dose rate radiobiological research using the BELLA PW laser proton beamline[J]. Scientific Reports, 2022, 12: 1484. doi: 10.1038/s41598-022-05181-3
    [20]
    Shi Ying, Zhang Manzhou, Ouyang Lianhua, et al. Design of a rapid-cycling synchrotron for Flash proton therapy[J]. Nuclear Science and Techniques, 2023, 34: 145. doi: 10.1007/s41365-023-01283-3
    [21]
    Mori S, Kanematsu N, Asakura H, et al. Four-Dimensional lung treatment planning in layer-stacking carbon ion beam treatment: comparison of layer-stacking and conventional ungated/gated irradiations[J]. International Journal of Radiation Oncology · Biology · Physics, 2011, 80(2): 597-607.
    [22]
    Kubo N, Kubota Y, Oike T, et al. Skin dose reduction by layer-stacking irradiation in carbon ion radiotherapy for parotid tumors[J]. Frontiers in Oncology, 2020, 10: 1396. doi: 10.3389/fonc.2020.01396
    [23]
    Grusell E, Montelius A, Brahme A, et al. A general solution to charged particle beam flattening using an optimized dual-scattering-foil technique, with application to proton therapy beams[J]. Physics in Medicine & Biology, 1994, 39(12): 2201-2216.
    [24]
    Wroe A J, Schulte R W, Barnes S, et al. Proton beam scattering system optimization for clinical and research applications[J]. Medical Physics, 2013, 40: 041702. doi: 10.1118/1.4793262
    [25]
    Gottschalk B. On the scattering power of radiotherapy protons[J]. Medical Physics, 2010, 37(1): 352-367. doi: 10.1118/1.3264177
    [26]
    Kainz K K, Antolak J A, Almond P R, et al. Dual scattering foil design for poly-energetic electron beams[J]. Physics in Medicine & Biology, 2005, 50(5): 755-767.
    [27]
    Weber U, Kraft G. Design and construction of a ripple filter for a smoothed depth dose distribution in conformal particle therapy[J]. Physics in Medicine & Biology, 1999, 44(11): 2765-2775.
    [28]
    Akagi T, Higashi A, Tsugami H, et al. Ridge filter design for proton therapy at Hyogo Ion Beam Medical Center[J]. Physics in Medicine & Biology, 2003, 48(22): N301-N312.
    [29]
    Kang M, Pang D. Commissioning and beam characterization of the first gantry-mounted accelerator pencil beam scanning proton system[J]. Medical Physics, 2020, 47(8): 3496-3510. doi: 10.1002/mp.13972
    [30]
    Smith B R, Hyer D E, Hill P M, et al. Secondary neutron dose from a dynamic collimation system during intracranial pencil beam scanning proton therapy: a Monte Carlo investigation[J]. International Journal of Radiation Oncology · Biology · Physics, 2019, 103(1): 241-250.
    [31]
    Grewal H S, Ahmad S, Jin H. Performance evaluation of adaptive aperture’s static and dynamic collimation in a compact pencil beam scanning proton therapy system: a dosimetric comparison study for multiple disease sites[J]. Medical Dosimetry, 2021, 46(2): 179-187. doi: 10.1016/j.meddos.2020.11.001
    [32]
    Grewal H S, Ahmad S, Jin H. Characterization of penumbra sharpening and scattering by adaptive aperture for a compact pencil beam scanning proton therapy system[J]. Medical Physics, 2021, 48(4): 1508-1519. doi: 10.1002/mp.14771
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article views (29) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return