Turn off MathJax
Article Contents
Liu Minzhou, Yang Yifan, Dou Qing, et al. Effects of extreme geoelectric fields on power system voltage stability considering complex earth conductivity structures[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250011
Citation: Liu Minzhou, Yang Yifan, Dou Qing, et al. Effects of extreme geoelectric fields on power system voltage stability considering complex earth conductivity structures[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250011

Effects of extreme geoelectric fields on power system voltage stability considering complex earth conductivity structures

doi: 10.11884/HPLPB202537.250011
  • Received Date: 2025-01-10
  • Accepted Date: 2025-04-24
  • Rev Recd Date: 2025-04-03
  • Available Online: 2025-04-23
  • The geoelectric fields induced by late-time high altitude electromagnetic pulse (HEMP E3) and geomagnetic storms lead to low frequency geomagnetically induced currents in the transmission grids, and the resulting half-cycle saturation of a large number of transformers could potentially threaten the power system voltage stability. However, in the existing study on HEMP E3 effect evaluation, it is typically assuming a uniform or 1D layered earth structure, without adequately considering the influence of lateral variations in earth conductivity on the induced geoelectric fields. Thus, it is difficult to rigorously assess the electromagnetic security of power systems under complex geological conditions such as coasts. This paper establishes a 3D computational model for HEMP E3 geoelectric fields based on finite element method, then studies the influence of complex earth conductivity structure on the spatiotemporal distribution of HEMP E3 geoelectric fields, and finally evaluates the power system voltage stability via electromagnetic transient simulation method. The results uncover substantial changes in the amplitude and duration of HEMP E3 geoelectric fields near the conductivity interface, which may lead to significant deviation in the voltage stability results of the power system. The method developed in this paper provides an important basis for the HEMP effect evaluation and protection of infrastructure located in complex geological areas.
  • loading
  • [1]
    谢彦召, 刘民周, 陈宇浩. 国家关键基础设施电磁恢复力[J]. 强激光与粒子束, 2019, 31:070001 doi: 10.11884/HPLPB201931.190202

    Xie Yanzhao, Liu Minzhou, Chen Yuhao. Electromagnetic resilience of critical national infrastructure[J]. High Power Laser and Particle Beams, 2019, 31: 070001 doi: 10.11884/HPLPB201931.190202
    [2]
    陈宇浩, 谢彦召, 刘民周, 等. 高空电磁脉冲作用下电力系统主要效应模式分析[J]. 强激光与粒子束, 2019, 31:070007 doi: 10.11884/HPLPB201931.190184

    Chen Yuhao, Xie Yanzhao, Liu Minzhou, et al. Analysis of high-altitude electromagnetic effect models on power system[J]. High Power Laser and Particle Beams, 2019, 31: 070007 doi: 10.11884/HPLPB201931.190184
    [3]
    秦锋, 陈伟, 毛从光, 等. 电力系统高空电磁脉冲效应研究综述[J]. 现代应用物理, 2023, 14(3):12-27

    Qin Feng, Chen Wei, Mao Congguang, et al. Review of high altitude electromagnetic pulse effects on power system[J]. Modern Applied Physics, 2023, 14(3): 12-27
    [4]
    Electromagnetic compatibility (EMC) —Part 2: environment—section 9: description of HEMP environment—radiated disturbance: IEC61000-2-9[S]. International Electrotechnical Commission, 1996.
    [5]
    Kruse V J, Rackliffe G B, Barnes P R. Load flow studies in the presence of magnetohydrodynamic electromagnetic pulse[J]. IEEE Transactions on Power Delivery, 1990, 5(2): 1158-1163. doi: 10.1109/61.53135
    [6]
    王建国. 高空核爆炸磁流体动力学电磁脉冲[J]. 强激光与粒子束, 2024, 36:073001 doi: 10.11884/HPLPB202436.240105

    Wang Jianguo. Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36: 073001 doi: 10.11884/HPLPB202436.240105
    [7]
    刘春明, 王红梅, 王璇. 多次磁暴下特高压电网GIC统计规律研究[J]. 中国电机工程学报, 2019, 39(15):4606-4614

    Liu Chunming, Wang Hongmei, Wang Xuan. Statistical analysis of geomagnetically induced currents in UHV power grids under multiple geomagnetic storms[J]. Proceedings of the CSEE, 2019, 39(15): 4606-4614
    [8]
    Liu Minzhou, Xie Yanzhao, Chen Yuhao, et al. Modeling the 10, 000-year geomagnetic disturbance scenarios based on extreme value analysis[J]. IEEE Letters on Electromagnetic Compatibility Practice and Applications, 2020, 2(4): 156-160. doi: 10.1109/LEMCPA.2020.3042457
    [9]
    Liu Minzhou, Xie Yanzhao, Yang Yifan, et al. Reduced nodal admittance matrix method for probabilistic GIC analysis in power grids[J]. IEEE Transactions on Power Systems, 2023, 38(5): 4950-4953. doi: 10.1109/TPWRS.2023.3280392
    [10]
    刘民周. 交流输电网和天然气管网地磁感应建模与高效算法研究[D]. 西安: 西安交通大学, 2024

    Liu Minzhou. Study on modeling and efficient algorithms for geomagnetic induction in AC transmission grids and gas pipeline networks[D]. Xi’an: Xi’an Jiaotong University, 2024
    [11]
    余同彬, 周璧华. 近地长电缆对高空电磁脉冲晚期部分的响应[J]. 强激光与粒子束, 2003, 15(12):1237-1240

    Yu Tongbin, Zhou Bihua. Response of long lines to late-time HEMP[J]. High Power Laser and Particle Beams, 2003, 15(12): 1237-1240
    [12]
    高志伟, 周于翔, 朱思熠. 晚期HEMP作用下铁路牵引供电系统GIC算法研究[J]. 强激光与粒子束, 2021, 33:093001 doi: 10.11884/HPLPB202133.210061

    Gao Zhiwei, Zhou Yuxiang, Zhu Siyi. Study on GIC algorithm of railway traction power supply system under action of late time HEMP[J]. High Power Laser and Particle Beams, 2021, 33: 093001 doi: 10.11884/HPLPB202133.210061
    [13]
    赵志斌, 柯俊吉, 马丽斌. 高空核电磁脉冲晚期效应对电网稳定性影响的研究[J]. 电气技术, 2015(9):16-19 doi: 10.3969/j.issn.1673-3800.2015.09.004

    Zhao Zhibin, Ke Junji, Ma Libin. Research on impact of late-time HEMP to stability of power grids[J]. Electrical Engineering, 2015(9): 16-19 doi: 10.3969/j.issn.1673-3800.2015.09.004
    [14]
    杨一帆, 刘民周, 谢彦召, 等. 高空电磁脉冲晚期成分作用下500kV变压器无功损耗仿真研究[J]. 电工技术学报, 2024, 39(1):267-277

    Yang Yifan, Liu Minzhou, Xie Yanzhao, et al. Simulation research on reactive power loss characteristic of 500 kV transformer under late-time high-altitude electromagnetic pulses[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 267-277
    [15]
    刘彤宇, 李丽, 王亚楠, 等. 高空电磁脉冲晚期环境下电力系统效应研究进展[J]. 强激光与粒子束, 2024, 36:055020 doi: 10.11884/HPLPB202436.240042

    Liu Tongyu, Li Li, Wang Ya’nan, et al. Research progress on power system effects in late-time high-altitude electromagnetic pulses environment[J]. High Power Laser and Particle Beams, 2024, 36: 055020 doi: 10.11884/HPLPB202436.240042
    [16]
    田君杨, 蒋连钿, 李海勇, 等. 高空核爆电磁脉冲晚期效应对变压器的影响[J]. 电波科学学报, 2024, 39(5):870-877

    Tian Junyang, Jiang Liandian, Li Haiyong, et al. Effect of strong electromagnetic pulse E3 environment on transformer[J]. Chinese Journal of Radio Science, 2024, 39(5): 870-877
    [17]
    王亚楠, 田逸涵, 马志钦, 等. 模拟极端地磁感应电流注入下缩比变压器电-磁-热效应试验研究[J]. 广东电力, 2024, 37(11):9-17

    Wang Ya’nan, Tian Yihan, Ma Zhiqin, et al. Experimental study on electro-magnetic-heat effects of scaled-down transformers under simulated extreme geomagnetic induced current injection[J]. Guangdong Electric Power, 2024, 37(11): 9-17
    [18]
    Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) attack: critical national infrastructures[R]. 2008.
    [19]
    Gilbert J, Kappenman J, Radasky W, et al. The late-time (E3) high-altitude electromagnetic pulse (HEMP) and its impact on the United States power grid[R]. Meta-R-321, 2010.
    [20]
    Overbye T J, Hutchins T R, Shetye K, et al. Integration of geomagnetic disturbance modeling into the power flow: A methodology for large-scale system studies[C]//2012 North American Power Symposium (NAPS). 2012: 1-7.
    [21]
    Hutchins T R, Overbye T J. Power system dynamic performance during the late-time (E3) high-altitude electromagnetic pulse[C]//2016 Power Systems Computation Conference (PSCC). 2016: 1-6.
    [22]
    Lee R H W, Shetye K S, Birchfield A B, et al. Using detailed ground modeling to evaluate electric grid impacts of late-time high-altitude electromagnetic pulses (E3 HEMP)[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1549-1557. doi: 10.1109/TPWRS.2018.2878533
    [23]
    Magnetohydrodynamic electromagnetic pulse assessment of the continental United States electric grid: voltage stability analysis[R]. EPRI, Palo Alto, CA: 2017. 3002011969.
    [24]
    Kim S, Jeong I. Vulnerability assessment of Korean electric power systems to late-time (E3) high-altitude electromagnetic pulses[J]. Energies, 2019, 12(17): 3335. doi: 10.3390/en12173335
    [25]
    王泽忠, 司远, 刘连光. 地磁暴对电力系统稳定性的影响[J]. 电工技术学报, 2022, 37(7):1780-1788

    Wang Zezhong, Si Yuan, Liu Lianguang. Influence of geomagnetic storms on the stability of power system[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1780-1788
    [26]
    辛文凯, 王泽忠, 刘春明, 等. 地磁暴影响下特高压交流电网电压稳定性量化评估方法[J]. 电工技术学报, 2023, 38(21):5771-5780

    Xin Wenkai, Wang Zezhong, Liu Chunming, et al. Quantitative evaluation method of voltage stability of UHV AC power network under geomagnetic storm[J]. Transactions of China Electrotechnical Society, 2023, 38(21): 5771-5780
    [27]
    Liu Chunming, Wang Xuan, Zhang Shuming, et al. Effects of lateral conductivity variations on geomagnetically induced currents: H-polarization[J]. IEEE Access, 2019, 7: 6310-6318. doi: 10.1109/ACCESS.2018.2889462
    [28]
    Liu Minzhou, Xie Yanzhao, Dong Ning, et al. Numerical analysis of nonuniform geoelectric field impacts on geomagnetic induction in pipeline networks[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(4): 999-1009. doi: 10.1109/TEMC.2022.3158885
    [29]
    王泽忠, 司远, 刘连光. 考虑地下各向异性介质的磁暴感应地电场研究[J]. 电工技术学报, 2022, 37(5):1070-1077,1114

    Wang Zezhong, Si Yuan, Liu Lianguang. Study on the induced geoelectric field of geomagnetic storm considering the underground anisotropic medium[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1070-1077,1114
    [30]
    郑宽. 大电网地磁感应电流影响因素及建模方法研究[D]. 北京: 华北电力大学, 2014

    Zheng Kuan. Research on influence factors and modelling methods of geomagnetically induced currents in large power grid[D]. Beijing: North China Electric Power University, 2014
    [31]
    Jankee P, Oyedokun D T O, Chisepo H. Synchronous generator modelling and excitation voltage control for GIC studies[C]//2021 13th IEEE PES Asia Pacific Power & Energy Engineering Conference (APPEEC). 2021: 1-6.
    [32]
    Jankee P, Oyedokun D T O, Chisepo H K. Dynamic response of power systems with real GICs: Impact on generator excitation control[J]. IEEE Transactions on Power Delivery, 2022, 37(6): 4911-4922. doi: 10.1109/TPWRD.2022.3162881
    [33]
    Kundur P. Power system stability and control[M]. New York: McGraw-Hill, 1994.
    [34]
    IEEE Std 421.5-2016, IEEE recommended practice for excitation system models for power system stability studies[S].
    [35]
    Haddadi A, Rezaei-Zare A, Gérin-Lajoie L, et al. A modified IEEE 118-bus test case for geomagnetic disturbance studies–Part I: Model data[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(3): 955-965. doi: 10.1109/TEMC.2019.2920271
    [36]
    TPL-007-4, Transmission system planned performance for geomagnetic disturbance events[S].
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (30) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return