Citation: | Liu Zhaoran, Li Shu, Tong Lili, et al. Research on influencing factors of overpressure discharge load in the primary system of nuclear reactors[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250012 |
[1] |
Shang Zhengrun, Lv Dufeng, Meng Zhaoming, et al. Depressurization behavior and strategy of automatic depressurization system for AP1000[C]//Proceedings of 2024 31st International Conference on Nuclear Engineering. 2024: V009T11A011.
|
[2] |
Shang Zhengrun, Lv Dufeng, Yu Pei, et al. Research on operating characteristics of AP1000 automatic depressurization system under typical accident condition[J]. Annals of Nuclear Energy, 2024, 206: 110657. doi: 10.1016/j.anucene.2024.110657
|
[3] |
Sun D C, Tian W X, Qiu S Z, et al. Scaling analysis of AP1000 ADS-4 entrainment and depressurization[J]. Progress in Nuclear Energy, 2014, 74: 71-78. doi: 10.1016/j.pnucene.2014.01.019
|
[4] |
Cho S, Park C K, Kim H Y, et al. Air clearing oscillation produced by APR1400 prototype sparger[C]//Proceedings of the ASME 2002 Pressure Vessels and Piping Conference. 2002: 23-30.
|
[5] |
Park C K, Cho S, Song C H, et al. Unit cell sparger test program and preliminary test results for APR1400[C]//Proceedings of the ASME 2002 Pressure Vessels and Piping Conference. 2002: 39-45.
|
[6] |
Jo J C. Numerical simulation of pressure transients in a PWR main steam line system due to quick operations of pressure relief valve[C]//Proceedings of the ASME 2009 Pressure Vessels and Piping Conference. 2009: 35-43.
|
[7] |
Yu S O, Jo J C. Analysis on transient piping pressure and force caused by high pressure steam flow disturbances[J]. Nuclear Engineering and Design, 2007, 237(3): 260-267. doi: 10.1016/j.nucengdes.2006.06.010
|
[8] |
王建平. AP1000自动卸压系统第1、2、3级优化研究[D]. 上海: 上海交通大学, 2018
Wang Jianping. Research on the optimization of AP1000 ADS stage 1, 2, and 3[D]. Shanghai: Shanghai Jiao Tong University, 2018
|
[9] |
Stubbe E J, VanHoenacker L, Otero R. RELAP5/MOD3 assessment for calculation of safety and relief valve discharge piping hydrodynamic loads[R]. NUREG/IA-0093, 1994.
|
[10] |
吴丹, 付冉, 王燕萍, 等. 两相排放载荷分析方法研究[J]. 核动力工程, 2015, 36(2): 160-164
Wu Dan, Fu Ran, Wang Yanping, et al. Study on analysis method for two phase discharge force[J]. Nuclear Power Engineering, 2015, 36(2): 160-164
|
[11] |
Lim J. RELAP5 analysis of hydrodynamic loads in response to PORV actuation[J]. Annals of Nuclear Energy, 2018, 115: 459-465. doi: 10.1016/j.anucene.2018.02.023
|
[12] |
Cho S, Song C H, Park C K, et al. Air clearing pressure oscillation produced in a quenching tank by a prototype unit cell sparger of the APR1400[J]. Nuclear Engineering and Design, 2008, 238(7): 1525-1534. doi: 10.1016/j.nucengdes.2007.12.001
|
[13] |
Park C K, Song C H. Influence of key parameters on the APR1400 in-containment refueling water storage tank hydrodynamic loads[J]. Journal of Nuclear Science and Technology, 2003, 40(10): 820-826. doi: 10.1080/18811248.2003.9715424
|
[14] |
Park C K, Song C H, Jun H G. Experimental investigation of the steam condensation phenomena due to a multi-hole sparger[J]. Journal of Nuclear Science and Technology, 2007, 44(4): 548-557. doi: 10.1080/18811248.2007.9711844
|
[15] |
Rayleigh L. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200): 94-98. doi: 10.1080/14786440808635681
|