Turn off MathJax
Article Contents
Yao Dingding, Zhang Weidong, Jin Long, et al. Field-line coupling characteristics of relay protection device under strong electromagnetic pulse[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250014
Citation: Yao Dingding, Zhang Weidong, Jin Long, et al. Field-line coupling characteristics of relay protection device under strong electromagnetic pulse[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250014

Field-line coupling characteristics of relay protection device under strong electromagnetic pulse

doi: 10.11884/HPLPB202537.250014
  • Received Date: 2025-01-15
  • Accepted Date: 2025-05-18
  • Rev Recd Date: 2025-06-03
  • Available Online: 2025-06-14
  • Strong electromagnetic pulse can form nanosecond rising edge pulse conduction disturbance on the cable in the form of field-transmission line coupling, which poses a great threat to the equipment at the end of the cable. For a certain type of relay protection device, the immunity performance is tested first, and then the high-altitude electromagnetic pulse irradiation test under the field-line coupling path is carried out to obtain the coupling characteristics of the device port. When the common mode current coupled to the signal port reaches 32.45A and above, the device malfunctions. At the same time, the pulse current injection test is carried out. When the pulse current injected into the signal port reaches 36.92A and more, the device malfunctions, further confirming the critical interference threshold of the device port. Through the establishment of the field-line coupling model of the secondary cable in the substation and the signal cable in the protective panel cabinet, the coupling quantity of high-altitude electromagnetic pulse in different scenarios is calculated, and the key points of field-line coupling protection are proposed. The research results can provide reference for the evaluation of anti-interference ability and protection technology of relay protection devices in strong electromagnetic pulse environments.
  • loading
  • [1]
    刘彤宇, 李丽, 王亚楠, 等. 高空电磁脉冲晚期环境下电力系统效应研究进展[J]. 强激光与粒子束, 2024, 36:055020 doi: 10.11884/HPLPB202436.240042

    Liu Tongyu, Li Li, Wang Ya’nan, et al. Research progress on power system effects in late-time high-altitude electromagnetic pulses environment[J]. High Power Laser and Particle Beams, 2024, 36: 055020 doi: 10.11884/HPLPB202436.240042
    [2]
    秦锋, 王旭桐, 陈伟, 等. 高空电磁脉冲作用下配电变压器瞬态响应与失效机理[J]. 中国电机工程学报, 2023, 43(17):6924-6932

    Qin Feng, Wang Xutong, Chen Wei, et al. Transient response and failure mechanism of distribution transformer under high-altitude electromagnetic pulse[J]. Proceedings of the CSEE, 2023, 43(17): 6924-6932
    [3]
    邱爱慈, 别朝红, 李更丰, 等. 强电磁脉冲威胁与弹性电力系统发展战略[J]. 现代应用物理, 2021, 12:030101

    Qiu Aici, Bie Zhaohong, LI Gengfeng, et al. HEMP threat and development strategy of resilient power system[J]. Modern Applied Physics, 2021, 12: 030101
    [4]
    李祥超, 王贤超. 输电线缆耦合强电磁脉冲特性的分析[J]. 电瓷避雷器, 2024(5):1-11

    Li Xiangchao, Wang Xianchao. Characteristics of power transmission cable coupled strong electromagnetic pulse[J]. Insulators and Surge Arresters, 2024(5): 1-11
    [5]
    克莱顿 R. 保罗. 多导体传输线分析[M]. 杨晓宪, 郑涛, 译. 2版. 北京: 中国电力出版社, 2013: 1-372

    Paul C R. Analysis of multiconductor transmission lines[M]. Yang Xiaoxian, Zheng Tao, trans. 2nd ed. Beijing: China Electric Power Press, 2013: 1-372
    [6]
    Taylor C, Satterwhite R, Harrison C. The response of a terminated two-wire transmission line excited by a nonuniform electromagnetic field[J]. IEEE Transactions on Antennas and Propagation, 1965, 13(6): 987-989. doi: 10.1109/TAP.1965.1138574
    [7]
    Agrawal A K, Price H J, Gurbaxani S H. Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field[J]. IEEE Transactions on Electromagnetic Compatibility, 1980, EMC-22(2): 119-129. doi: 10.1109/TEMC.1980.303824
    [8]
    Rachidi F. Formulation of the field-to-transmission line coupling equations in terms of magnetic excitation field[J]. IEEE Transactions on Electromagnetic Compatibility, 1993, 35(3): 404-407. doi: 10.1109/15.277316
    [9]
    席志豪, 梁涛, 谢彦召, 等. 基于时域BLT方程的带绝缘线缆束场-线耦合模型[J]. 高电压技术, 2024, 50(2):758-764

    Xi Zhihao, Liang Tao, Xie Yanzhao, et al. Field-to-line coupling model for insulated wiring bundle based on time-domain BLT equation[J]. High Voltage Engineering, 2024, 50(2): 758-764
    [10]
    Paul C R. A SPICE model for multiconductor transmission lines excited by an incident electromagnetic field[J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 36(4): 342-354. doi: 10.1109/15.328864
    [11]
    胡榕, 崔翔, 陈维江, 等. 一种电磁场-传输线组合的时域有限差分方法[J]. 华北电力大学学报, 2015, 42(3):1-7,30

    Hu Rong, Cui Xiang, Chen Weijiang, et al. A method of finite difference time domain combined with electromagnetic field and transmission lines[J]. Journal of North China Electric Power University, 2015, 42(3): 1-7,30
    [12]
    李宝忠, 何金良, 周辉, 等. 核电磁脉冲环境中传输线的电磁干扰[J]. 高电压技术, 2009, 35(11):2753-2758

    Li Baozhong, He Jinliang, Zhou Hui, et al. Eletromagnetic interference of transmisssion line in HEMP environment[J]. High Voltage Engineering, 2009, 35(11): 2753-2758
    [13]
    龚渝涵, 李俊娜, 田君杨, 等. 典型变电站沟内线缆HEMP耦合仿真研究[J]. 智慧电力, 2024, 52(4):47-53,99 doi: 10.3969/j.issn.1673-7598.2024.04.008

    Gong Yuhan, Li Junna, Tian Junyang, et al. Simulation study on HEMP coupling of cables in the trench of typical substation[J]. Smart Power, 2024, 52(4): 47-53,99 doi: 10.3969/j.issn.1673-7598.2024.04.008
    [14]
    张卫东, 陈沛龙, 陈维江, 等. 特高压GIS变电站VFTO对二次电缆骚扰电压的实测与仿真[J]. 中国电机工程学报, 2013, 33(16):187-196

    Zhang Weidong, Chen Peilong, Chen Weijiang, et al. Measurement and simulation of disturbance voltage generated by VFTO in UHV GIS substation on the secondary cables[J]. Proceedings of the CSEE, 2013, 33(16): 187-196
    [15]
    陈维江, 赵军, 边凯, 等. GIS变电站开关操作瞬态电磁骚扰研究进展[J]. 中国电机工程学报, 2019, 39(16):4935-4948

    Chen Weijiang, Zhao Jun, Bian Kai, et al. Research progress on transient electromagnetic disturbance due to switching operations in GIS substation[J]. Proceedings of the CSEE, 2019, 39(16): 4935-4948
    [16]
    潘晓东, 魏光辉, 万浩江, 等. 电子设备电磁辐射敏感度测试相关问题研究[J]. 强激光与粒子束, 2020, 32:073002

    Pan Xiaodong, Wei Guanghui, Wan Haojiang, et al. Research on several test issues of electromagnetic radiation susceptibility for electronic equipment[J]. High Power Laser and Particle Beams, 2020, 32: 073002
    [17]
    潘晓东, 魏光辉, 卢新福, 等. 差模定向注入等效替代强电磁脉冲辐射效应试验方法[J]. 电波科学学报, 2017, 32(2):151-160

    Pan Xiaodong, Wei Guanghui, Lu Xinfu, et al. Test method of using differential mode directional injection as a substitute for high intensity electromagnetic pulse radiation[J]. Chinese Journal of Radio Science, 2017, 32(2): 151-160
    [18]
    黄蕙. 微机继电保护硬件系统的抗电磁干扰设计策略[J]. 电力系统保护与控制, 2010, 38(20):220-224

    Huang Hui. Design strategy of electromagnetic anti-jamming for hardware system of microcomputer relay protection[J]. Power System Protection and Control, 2010, 38(20): 220-224
    [19]
    郑玉平, 吕鹏飞, 李斌, 等. 新型电力系统继电保护面临的问题与解决思路[J]. 电力系统自动化, 2023, 47(22):3-15

    Zheng Yuping, Lyu Pengfei, Li Bin, et al. Problems faced by relay protection in new power system and their solution ideas[J]. Automation of Electric Power Systems, 2023, 47(22): 3-15
    [20]
    GB/T 17799.5-2012, 电磁兼容 通用标准 室内设备高空电磁脉冲(HEMP)抗扰度[S]

    GB/T 17799.5-2012, Electromagnetic compatibility (EMC)-Generic standards-HEMP immunity for indoor equipment[S]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views (7) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return