Turn off MathJax
Article Contents
Kan Mingxian, Zhang Zhaohui, Duan Shuchao. Numerical simulation of flyer plate couples with different thickness driven by a same current[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250017
Citation: Kan Mingxian, Zhang Zhaohui, Duan Shuchao. Numerical simulation of flyer plate couples with different thickness driven by a same current[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250017

Numerical simulation of flyer plate couples with different thickness driven by a same current

doi: 10.11884/HPLPB202537.250017
  • Received Date: 2025-01-17
  • Accepted Date: 2025-07-20
  • Rev Recd Date: 2025-07-15
  • Available Online: 2025-07-22
  • Background
    Magnetically driven flyer plate technology can be used for the study of high-pressure equation of state and material properties. Generally, when the same force pushes objects of different masses, the lighter object always gains greater velocity. However, in a magnetically driven symmetrical flyer plate launch experiment, the same current drove two flyer plate couple of thicknesses 0.37 mm and 0.48 mm. The final measurement velocity of the 0.37 mm flyer plate couple was 18 km/s, and the final measurement velocity of 0.48 mm flyer plate couple was 19 km/s; that is, the measured velocity of the thick flyer plate couple was even greater.
    Purpose
    This paper studies the physical mechanism of this anomalous phenomenon in the magnetically driven symmetrical flyer plate launch experiment.
    Methods
    A two-dimensional magnetically driven simulation code (MDSC2), in which the boundary magnetic field is affected by ablation, was used to simulate and analyze this experiment.
    Results
    The numerical simulation shows that, the MDSC2 code with the boundary magnetic field affected by ablation can correctly simulate the dynamic process of 0.37 mm and 0.48 mm flyer plate couple, and the simulated velocities of 0.37 mm and 0.48 mm flyer plate couple are consistent with the measured velocities. The reason the final recorded velocity of the thicker flyer plate couple is larger than that of thinner one is that the time to complete melting for the thicker flyer plate is longer than that of thinner one in the magnetically driven symmetrical flyer plate experiment.
    Conclusions
    This work advances the physical understanding of magnetically driven flyer plate launch process, and further confirms the correctness of the boundary magnetic field formula with the ablation effect.
  • loading
  • [1]
    Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38(6): 480-485. doi: 10.1016/j.ijimpeng.2010.10.019
    [2]
    Lemke R W, Knudson M D, Bliss D E, et al. Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments[J]. Journal of Applied Physics, 2005, 98: 073530. doi: 10.1063/1.2084316
    [3]
    Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 Gpa using a magnetically accelerated flyer plate technique[J]. Journal of Applied Physics, 2003, 94(7): 4420-4431. doi: 10.1063/1.1604967
    [4]
    Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Physical Review Letters, 2001, 87: 225501. doi: 10.1103/PhysRevLett.87.225501
    [5]
    Knudson M D, Hanson D L, Bailey J E, et al. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 Gpa[J]. Physical Review Letters, 2003, 90: 035505. doi: 10.1103/PhysRevLett.90.035505
    [6]
    Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Physical Review B, 2004, 69: 144209. doi: 10.1103/PhysRevB.69.144209
    [7]
    Vogler T J, Ao T, Asay J R. High-pressure strength of aluminum under quasi-isentropic loading[J]. International Journal of Plasticity, 2009, 25(4): 671-694. doi: 10.1016/j.ijplas.2008.12.003
    [8]
    Davis J P, Brown J L, Knudson M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: application to tantalum[J]. Journal of Applied Physics, 2014, 116: 204903. doi: 10.1063/1.4902863
    [9]
    王贵林, 张朝辉, 郭帅, 等. 聚龙一号装置上铜的准等熵压缩线测量实验研究[J]. 强激光与粒子束, 2016, 28: 055010 doi: 10.11884/HPLPB201628.055010

    Wang Guilin, Zhang Zhaohui, Guo Shuai, et al. Experimental measurement of quasi-isentrope for copper on PTS[J]. High Power Laser and Particle Beams, 2016, 28: 055010 doi: 10.11884/HPLPB201628.055010
    [10]
    郭帅, 王贵林, 张朝辉, 等. 聚龙一号装置准等熵压缩实验负载优化研究[J]. 强激光与粒子束, 2016, 28: 015015 doi: 10.11884/HPLPB201628.015015

    Guo Shuai, Wang Guilin, Zhang Zhaohui, et al. Optimization of load configurations for isentropic compression experiments on PTS[J]. High Power Laser and Particle Beams, 2016, 28: 015015 doi: 10.11884/HPLPB201628.015015
    [11]
    Reisman D B, Toor A, Cauble R C, et al. Magnetically driven isentropic compression experiments on the Z accelerator[J]. Journal of Applied Physics, 2001, 89(3): 1625-1633. doi: 10.1063/1.1337082
    [12]
    Lemke R W, Knudson M D, Hall C A, et al. Characterization of magnetically accelerated flyer plates[J]. Physics of Plasmas, 2003, 10(4): 1092-1099. doi: 10.1063/1.1554740
    [13]
    Kan Mingxian, Zhang Zhaohui, Xiao Bo, et al. Simulation of magnetically driven flyer plate experiments with an improved magnetic field boundary formula[J]. High Energy Density Physics, 2018, 26: 38-43. doi: 10.1016/j.hedp.2017.12.002
    [14]
    阚明先, 蒋吉昊, 王刚华, 等. 衬套内爆ALE方法二维MHD数值模拟[J]. 四川大学学报(自然科学版), 2007, 44(1): 91-96

    Kan Mingxian, Jiang Jihao, Wang Ganghua, et al. ALE simulation 2D MHD for liner[J]. Journal of Sichuan University(Natural Science Edition), 2007, 44(1): 91-96
    [15]
    阚明先, 王刚华, 赵海龙, 等. 磁驱动飞片二维磁流体力学数值模拟[J]. 强激光与粒子束, 2013, 25(8): 2137-2141 doi: 10.3788/HPLPB20132508.2137

    Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Two-dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates[J]. High Power Laser and Particle Beams, 2013, 25(8): 2137-2141 doi: 10.3788/HPLPB20132508.2137
    [16]
    阚明先, 段书超, 王刚华, 等. 磁驱动飞片发射实验结构系数初步研究[J]. 强激光与粒子束, 2020, 32: 085002 doi: 10.11884/HPLPB202032.200072

    Kan Mingxian, Duan Shuchao, Wang Ganghua, et al. Structure coefficient in magnetically driven flyer plate experiment[J]. High Power Laser and Particle Beams, 2020, 32: 085002 doi: 10.11884/HPLPB202032.200072
    [17]
    阚明先, 王刚华, 段书超, 等. 二维磁驱动数值模拟程序(V1.0), 2023, 登记号: 2023SR0715446

    Kan Mingxian, Wang Ganghua, Duan Shuchao, et al. Two-dimensional magnetically driven simulation code(V1.0), 2023, registration number: 2023SR0715446
    [18]
    阚明先, 贾月松, 张南川, 等. 回流罩结构Z-箍缩实验的数值模拟[J]. 强激光与粒子束, 2023, 35: 025003 doi: 10.11884/HPLPB202335.220271

    Kan Mingxian, Jia Yuesong, Zhang Nanchuan, et al. Simulation of Z-pinch experiments with a reflux hood structure[J]. High Power Laser and Particle Beams, 2023, 35: 025003 doi: 10.11884/HPLPB202335.220271
    [19]
    阚明先, 陈涵, 吴凤超, 等. 磁驱动固体套筒实验模拟中的电流系数[J]. 高压物理学报, 2025, 39: 012301 doi: 10.11858/gywlxb.20240844

    Kan Mingxian, Chen Han, Wu Fengchao, et al. Current coefficient law in simulation of magnetically driven solid liner experiment[J]. Chinese Journal of High Pressure Physics, 2025, 39: 012301 doi: 10.11858/gywlxb.20240844
    [20]
    阚明先, 王刚华, 肖波, 等. 磁驱动单侧飞片实验的数值模拟[J]. 爆炸与冲击, 2020, 40: 033304 doi: 10.11883/bzycj-2019-0103

    Kan Mingxian, Wang Ganghua, Xiao Bo, et al. Simulation on magnetically-driven one-sided flyer plate experiments[J]. Explosion and Shock Waves, 2020, 40: 033304 doi: 10.11883/bzycj-2019-0103
    [21]
    阚明先, 段书超, 王刚华, 等. 自由面被烧蚀磁驱动飞片的数值模拟[J]. 强激光与粒子束, 2017, 29: 045003 doi: 10.11884/HPLPB201729.160482

    Kan Mingxian, Duan Shuchao, Wang Ganghua, et al. Numerical simulation of magnetically driven flyer plate of ablated free surface[J]. High Power Laser and Particle Beams, 2017, 29: 045003 doi: 10.11884/HPLPB201729.160482
    [22]
    阚明先, 王刚华, 刘利新, 等. 带窗口磁驱动准等熵压缩实验模拟[J]. 强激光与粒子束, 2021, 33: 055001 doi: 10.11884/HPLPB202133.200329

    Kan Mingxian, Wang Ganghua, Liu Lixin, et al. Simulation of magnetically driven quasi-isentropic compression experiments with windows[J]. High Power Laser and Particle Beams, 2021, 33: 055001 doi: 10.11884/HPLPB202133.200329
    [23]
    阚明先, 刘利新, 南小龙, 等. 磁驱动样品实验数值模拟研究[J]. 高压物理学报, 2023, 37: 062301 doi: 10.11858/gywlxb.20230683

    Kan Mingxian, Liu Lixin, Nan Xiaolong, et al. Numerical simulation of magnetically driven sample experiment[J]. Chinese Journal of High Pressure Physics, 2023, 37: 062301 doi: 10.11858/gywlxb.20230683
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (87) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return