Citation: | Li Guohao, Gu Jingliang, Tang Qianke, et al. Anomaly detection for phase control of large-scale fiber laser coherent combination based on deep learning[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250019 |
[1] |
McNaught S J, Komine H, Weiss S B, et al. 100 kW coherently combined slab MOPAs[C]//Proceedings of the 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference. 2009: 1-2.
|
[2] |
Uberna R, Bratcher A, Tiemann B G. Power scaling of a fiber master oscillator power amplifier system using a coherent polarization beam combination[J]. Applied Optics, 2010, 49(35): 6762-6765. doi: 10.1364/AO.49.006762
|
[3] |
刘泽金, 周朴, 马鹏飞, 等. 4路高功率窄线宽、线偏振光纤放大器相干偏振合成实现5kW级高亮度激光输出[J]. 中国激光, 2017, 44: 0415004 doi: 10.3788/CJL201744.0415004
Liu Zejin, Zhou Pu, Ma Pengfei, et al. Coherent polarization synthesis of four high-power narrow-linewidth, linearly polarized fiber amplifiers to achieve 5 kW high-brightness laser output[J]. Chinese Journal of Lasers, 2017, 44: 0415004 doi: 10.3788/CJL201744.0415004
|
[4] |
张嘉怡, 任博, 李灿, 等. 八路超快光纤激光高效相干偏振合成[J]. 中国激光, 2024, 51: 1516001 doi: 10.3788/CJL240842
Zhang Jiayi, Ren Bo, Li Can, et al. Eight-channel ultrafast fiber lasers achieve efficient coherent polarization beam combination[J]. Chinese Journal of Lasers, 2024, 51: 1516001 doi: 10.3788/CJL240842
|
[5] |
周宏冰, 张昊宇, 李敏, 等. 大规模激光相干合成主动相位控制技术研究进展[J]. 强激光与粒子束, 2024, 36: 061001
Zhou Hongbing, Zhang Haoyu, Li Min, et al. Progress in active phase control for large-scale coherent laser beam combining[J]. High Power Laser and Particle Beams, 2024, 36: 061001
|
[6] |
常琦, 高志强, 邓宇, 等. 强噪声下光纤激光相干合成突破千路[J]. 中国激光, 2023, 50: 0616001 doi: 10.3788/CJL221540
Chang Qi, Gao Zhiqiang, Deng Yu, et al. Fiber laser coherent beam combination breaks through 1000 channels under strong noise[J]. Chinese Journal of Lasers, 2023, 50: 0616001 doi: 10.3788/CJL221540
|
[7] |
Goodno G D, Shih C C, Rothenberg J E. Perturbative analysis of coherent combining efficiency with mismatched lasers[J]. Optics Express, 2010, 18(24): 25403-25414. doi: 10.1364/OE.18.025403
|
[8] |
颜宏, 叶一东, 卢飞, 等. 基于偏振鉴相的相干合成技术[J]. 强激光与粒子束, 2013, 25(s1): 5-8
Yan Hong, Ye Yidong, Lu Fei, et al. Coherent beam combining based on polarization phase discrimination[J]. High Power Laser and Particle Beams, 2013, 25(s1): 5-8
|
[9] |
李彬, 叶一东, 颜宏, 等. 激光场相干叠加光束合成技术[J]. 强激光与粒子束, 2014, 26: 101023 doi: 10.3788/HPLPB20142610.101023
Li Bin, Ye Yidong, Yan Hong, et al. Technology of filled-aperture coherent beam combining[J]. High Power Laser and Particle Beams, 2014, 26: 101023 doi: 10.3788/HPLPB20142610.101023
|
[10] |
刘家盈, 李自强, 杨然, 等. 光纤激光相控阵相干合成技术研究进展[J]. 强激光与粒子束, 2023, 35: 041003
Liu Jiaying, Li Ziqiang, Yang Ran, et al. Research progress of coherent beam combining technique of phased fiber laser array[J]. High Power Laser and Particle Beams, 2023, 35: 041003
|
[11] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 6000-6010.
|
[12] |
Al-Hardanee O F, Demirel H. Hydropower station status prediction using RNN and LSTM algorithms for fault detection[J]. Energies, 2024, 17: 5599. doi: 10.3390/en17225599
|
[13] |
Chen Haipeng, Yan Jie, Fu Wenxing. Two-layer fault diagnosis model of aircraft based on LSTM[J]. Aerospace Science and Technology, 2025, 158: 109756. doi: 10.1016/j.ast.2024.109756
|
[14] |
Ouyang Daliang, He Su, Zhan Guozhong, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2023: 1-5.
|
[15] |
Chollet F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017: 1800-1807.
|
[16] |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016: 770-778.
|
[17] |
Yang Xu, Qu Shuo’ou, Wang Zhilin, et al. The study on ultrasound image classification using a dual-branch model based on Resnet50 guided by U-net segmentation results[J]. BMC Medical Imaging, 2024, 24: 314. doi: 10.1186/s12880-024-01486-z
|
[18] |
张海瑞. 基于ONNX与PyTorch框架的神经网络格式转换研究[D]. 西安: 西安电子科技大学, 2023
Zhang Hairui. Research on the conversion of neural network formats using ONNX and PyTorch frameworks[D]. Xi’an: Xidian University, 2023
|
[19] |
Shafique M A, Munir A, Kong J. Deep learning performance characterization on GPUs for various quantization frameworks[J]. AI, 2023, 4(4): 926-948. doi: 10.3390/ai4040047
|
[20] |
Zhang Shicheng, Zhang Laixian, Qin Mingyu, et al. TensorRT acceleration based on deep learning photoelectric target detection[C]//Proceedings of the International Conference on Intelligent and Human-Computer Interaction Technology (IHCIT 2022). 2022.
|