Citation: | Chen Yiheng, Wang Shaofei, Zhao Jia, et al. Low power microwave ignition technology of energetic materials based on dual-focusing of rectangular resonant cavity and microwave probe[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250030 |
[1] |
严启龙, 刘林林. 含能材料前沿导论[M]. 北京: 科学出版社, 2022
Yan Qilong, Liu Linlin. Frontier introduction of energetic materials[M]. Beijing: Science Press, 2022
|
[2] |
Daily M E, Glover B B, Son S F, et al. X-band microwave properties and ignition predictions of neat explosives[J]. Propellants, Explosives, Pyrotechnics, 2013, 38(6): 810-817. doi: 10.1002/prep.201300068
|
[3] |
Ikuta K. Microwave ignition of wet explosives for hypervelocity[C]//Proceedings of the 2000 13th International Conference on High-Power Particle Beams. 2000: 909-913.
|
[4] |
刘鹤欣, 赵凤起, 秦钊, 等. 固体含能材料点火引燃技术研究进展[J]. 火炸药学报, 2023, 46(8):669-687
Liu Hexin, Zhao Fengqi, Qin Zhao, et al. Research progress on ignition technologies of solid energetic materials[J]. Chinese Journal of Explosives & Propellants, 2023, 46(8): 669-687
|
[5] |
高勇. 典型材料高功率下微波介电特性研究[D]. 成都: 电子科技大学, 2019
Gao Yong. Research on microwave dielectric characteristics of typical material under high power level[D]. Chengdu: University of Electronic Science and Technology of China, 2019
|
[6] |
廖虹宇. 单质含能材料点火过程温度场与燃烧波测量方法研究[D]. 绵阳: 西南科技大学, 2023
Liao Hongyu. Research on measurement methods of temperature fields and combustion waves during ignition for single-mass energy-containing materials[D]. Mianyang: Southwest University of Science and Technology, 2023
|
[7] |
马晗晔, 王雨时, 王光宇. 国外不敏感炸药综述[J]. 兵器装备工程学报, 2020, 41(5):166-174 doi: 10.11809/bqzbgcxb2020.05.032
Ma Hanye, Wang Yushi, Wang Guangyu. Summary of foreign insensitive explosives[J]. Journal of Ordnance Equipment Engineering, 2020, 41(5): 166-174 doi: 10.11809/bqzbgcxb2020.05.032
|
[8] |
李天宇, 王雨时, 闻泉, 等. 钝感爆炸元件技术发展综述[J]. 兵器装备工程学报, 2019, 40(7):76-84 doi: 10.11809/bqzbgcxb2019.07.016
Li Tianyu, Wang Yushi, Wen Quan, et al. Summary of development of insensitive explosive elements[J]. Journal of Ordnance Equipment Engineering, 2019, 40(7): 76-84 doi: 10.11809/bqzbgcxb2019.07.016
|
[9] |
Meir Y, Jerby E. Thermite powder ignition by localized microwaves[J]. Combustion and Flame, 2012, 159(7): 2474-2479. doi: 10.1016/j.combustflame.2012.02.015
|
[10] |
Alibay Z, Kline D J, Rehwoldt M C, et al. Mechanism of microwave-initiated ignition of sensitized energetic nanocomposites[J]. Chemical Engineering Journal, 2021, 415: 128657. doi: 10.1016/j.cej.2021.128657
|
[11] |
Kline D J, Rehwoldt M C, Turner C J, et al. Spatially focused microwave ignition of metallized energetic materials[J]. Journal of Applied Physics, 2020, 127: 055901. doi: 10.1063/1.5134089
|
[12] |
Barkley S J, Lawrence A R, Zohair M, et al. Smart electromagnetic thermites: GO/rGO nanoscale thermite composites with thermally switchable microwave ignitability[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 39678-39688.
|
[13] |
Cheng Jian, Zhang Zehua, Li Fuwei, et al. Microwave ignition characteristics and distinction of typical nanothermites under different electromagnetic radiation[J]. Combustion and Flame, 2024, 260: 113217. doi: 10.1016/j.combustflame.2023.113217
|
[14] |
Tang Kui, Chen Xiaoyuan, Tang Zhenhua, et al. Ignition performance and mechanism of Ti/CuFe2O4 composites with high microwave sensitivity[J]. Ceramics International, 2024, 50(17): 29256-29267. doi: 10.1016/j.ceramint.2024.05.221
|
[15] |
Cheng Jian, Zhang Zehua, Wang Yueting, et al. Doping of Al/CuO with microwave absorbing Ti3C2 MXene for improved ignition and combustion performance[J]. Chemical Engineering Journal, 2023, 451: 138375. doi: 10.1016/j.cej.2022.138375
|
[16] |
岳雅楠. 微波等离子体点火研究[D]. 成都: 电子科技大学, 2020
Yue Ya’nan. Research on microwave plasma ignition[D]. Chengdu: University of Electronic Science and Technology of China, 2020
|
[17] |
郑良岑. 微波多点点火研究[D]. 成都: 电子科技大学, 2022
Zheng Liangcen. Research on multipoint ignition by microwave[D]. Chengdu: University of Electronic Science and Technology of China, 2022
|
[18] |
涂兆正. 基于同轴谐振腔的微波点火技术研究[D]. 成都: 电子科技大学, 2022
Tu Zhaozheng. Research on microwave ignition technology based on coaxial resonator[D]. Chengdu: University of Electronic Science and Technology of China, 2022
|
[19] |
Pozar D M. 微波工程[M]. 2版. 谭云华, 译. 北京: 电子工业出版社, 2019: 217-249
Pozar D M. Microwave engineering[M]. 2nd ed. Tan Yunhua, trans. Beijing: Publishing House of Electronics Industry, 2019: 217-249
|
[20] |
吴明英, 毛秀华. 微波技术[M]. 西安: 西北电讯工程学院出版社, 1985: 193-194
Wu Mingying, Mao Xiuhua. Microwave technology[M]. Xi’an: Northwest Telecommunication Engineering College Press, 1985: 193-194
|
[21] |
卢言. 小型化铷原子频标中微波谐振腔的研究与设计[D]. 兰州: 兰州大学, 2021
Lu Yan. Research and design of the microwave cavity in rubidium atomic frequency standard for miniaturization[D]. Lanzhou: Lanzhou University, 2021
|