Turn off MathJax
Article Contents
Liu Lunyi, Zhang Qing, Zhang Shu, et al. A miniaturized inverted-F electromagnetic protective antenna based on U-shaped protective structure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250032
Citation: Liu Lunyi, Zhang Qing, Zhang Shu, et al. A miniaturized inverted-F electromagnetic protective antenna based on U-shaped protective structure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250032

A miniaturized inverted-F electromagnetic protective antenna based on U-shaped protective structure

doi: 10.11884/HPLPB202537.250032
  • Received Date: 2025-02-21
  • Accepted Date: 2025-04-10
  • Rev Recd Date: 2025-04-10
  • Available Online: 2025-05-29
  • In this paper, a miniaturized Planar Inverted-F Electromagnetic Protective Antenna is proposed, which achieves adaptive switching between the normal operation mode and the electromagnetic protection mode by loading a U-shaped protective structure on the planar inverted-F antenna. The U-shaped structure is connected to the antenna feed line via PIN diodes. Under normal operation, when the received signal power is below the threshold, the PIN diodes remain in the cutoff state, allowing the antenna to maintain its radiation characteristics without interference from the U-shaped structure. When under high-power microwave attacks, a strong induced electric field is generated across the PIN diodes in the U-shaped structure, causing them to rapidly switch to achieve a low-impedance conduction state. At this point, the U-shaped structure forms a closed loop with the feed line, effectively preventing high-power microwave signals from entering the backend electronic equipment, thereby achieving electromagnetic protection. By optimizing the geometric parameters of the U-shaped structure and the number of loaded diodes, the design maintains its compact size while delivering excellent radiation performance and protection capability. Measurement results show that the antenna achieves a relative bandwidth of 17.2%, with a gain of 2.36 dBi at the center frequency of 1.57 GHz. Simulation results demonstrate a protection level of 16.4 dB in the electromagnetic protection state. The radiator’s electrical dimension is only 0.25λ×0.06λ, realizing a miniaturized design for the electromagnetic protective antenna.
  • loading
  • [1]
    毋召锋, 徐延林, 刘培国, 等. 电磁防护技术发展综述与展望[J]. 强激光与粒子束, 2024, 36:043001 doi: 10.11884/HPLPB202436.230375

    Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. Review and prospect of electromagnetic protection technology development[J]. High Power Laser and Particle Beams, 2024, 36: 043001 doi: 10.11884/HPLPB202436.230375
    [2]
    陆尚雨. 基于能量选择表面的强电磁环境防护技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2022

    Lu Shangyu. Research on strong electromagnetic environment protection technology based on energy selective surface[D]. Harbin: Harbin Institute of Technology, 2022
    [3]
    胡晓, 邱扬, 田锦. 车载单极天线的电磁脉冲响应特性[J]. 强激光与粒子束, 2018, 30:033201 doi: 10.11884/HPLPB201830.170177

    Hu Xiao, Qiu Yang, Tian Jin. Response characteristics of vehicle monopole antenna exposed to electromagnetic pulse[J]. High Power Laser and Particle Beams, 2018, 30: 033201 doi: 10.11884/HPLPB201830.170177
    [4]
    杨成, 刘培国, 刘继斌, 等. 能量选择表面的瞬态响应[J]. 强激光与粒子束, 2013, 25(4):1045-1049 doi: 10.3788/HPLPB20132504.1045

    Yang Cheng, Liu Peiguo, Liu Jibin, et al. Transient response of energy selective surface[J]. High Power Laser and Particle Beams, 2013, 25(4): 1045-1049 doi: 10.3788/HPLPB20132504.1045
    [5]
    刘培国, 万双林, 李高升, 等. 一种电磁能量选择表面: 101754668A[P]. 2010-06-23

    Liu Peiguo, Wan Shuanglin, Li Gaosheng, et al. Electromagnetic energy selection surface: 101754668A[P]. 2010-06-23
    [6]
    吴欢成, 胡进光, 钟龙权, 等. 电磁能量选择表面的场路协同仿真与实验研究[J]. 强激光与粒子束, 2017, 29:093203 doi: 10.11884/HPLPB201729.170088

    Wu Huancheng, Hu Jinguang, Zhong Longquan, et al. Field-circuit co-simulation and experiment of electromagnetic energy selective surface[J]. High Power Laser and Particle Beams, 2017, 29: 093203 doi: 10.11884/HPLPB201729.170088
    [7]
    Yang Cheng, Liu Peiguo, Huang Xianjun. A novel method of energy selective surface for adaptive HPM/EMP protection[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 112-115. doi: 10.1109/LAWP.2013.2243105
    [8]
    Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. An ultra-broadband energy selective surface design method: from filter circuits to metamaterials[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(7): 5865-5873. doi: 10.1109/TAP.2023.3276447
    [9]
    王冠皓. 机载电磁能量选择表面设计与实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2021

    Wang Guanhao. Design and experimental study of airborne electromagnetic energy selective surface[D]. Harbin: Harbin Institute of Technology, 2021
    [10]
    Chen Qi, Cheng Yanqing, Min Weitong, et al. A composite energy-selective surface based on diode-induced VO2 conduction for the applications of adaptive electromagnetic protection[J]. Microwave and Optical Technology Letters, 2024, 66: e33895. doi: 10.1002/mop.33895
    [11]
    Zhou Lin, Shen Zhongxiang. 3-D absorptive energy-selective structures[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5664-5672. doi: 10.1109/TAP.2021.3061097
    [12]
    Wang Meini, Tang Min, Zhang Haochi, et al. Energy selective antenna: concept, design, and experiment[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(2): 539-545. doi: 10.1109/TEMC.2023.3237689
    [13]
    Fang Jiarui, Wu Qi, Su Donglin. An energy selective antenna based on the folded dipole structure and PIN diodes[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(6): 2006-2014. doi: 10.1109/TEMC.2023.3319994
    [14]
    Zha Song, Qu Zhuang, Zhang Jihong, et al. A gain-reconfigurable reflector antenna with surface-mounted field-induced artificial magnetic conductor for adaptive HIRF prevention[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(9): 7252-7260. doi: 10.1109/TAP.2024.3434371
    [15]
    Wang Zhao, Liu Yingli, Dong Yuandan. Novel miniaturized circularly polarized inverted-f antenna with planar configuration[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(3): 1005-1009. doi: 10.1109/LAWP.2023.3341843
    [16]
    Yang Silei, Geng Junping, Wang Kun, et al. A novel compact wideband planar inverted-F fishbone antenna with load-bearing capacity and its application in CP arrays[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(4): 3162-3174. doi: 10.1109/TAP.2024.3368287
    [17]
    Hu Ning, Zhao Yuting, Zhang Jihong, et al. High-performance energy selective surface based on equivalent circuit design approach[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4526-4538. doi: 10.1109/TAP.2021.3137293
    [18]
    王跃. 小型化宽频带平面倒F天线的研究与设计[D]. 武汉: 华中师范大学, 2013

    Wang Yue. Research and design for the miniaturization and broadband of planar inverted-F antenna[D]. Wuhan: Central China Normal University, 2013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article views (32) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return