Turn off MathJax
Article Contents
Xie Bo, Zhang Xiaohui, Li Tianyue, et al. Numerical study of electron acceleration and betatron radiation base on the interaction of petawatt femtosecond laser with near-critical-density plasma[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250033
Citation: Xie Bo, Zhang Xiaohui, Li Tianyue, et al. Numerical study of electron acceleration and betatron radiation base on the interaction of petawatt femtosecond laser with near-critical-density plasma[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250033

Numerical study of electron acceleration and betatron radiation base on the interaction of petawatt femtosecond laser with near-critical-density plasma

doi: 10.11884/HPLPB202537.250033
  • Received Date: 2025-02-24
  • Accepted Date: 2025-04-27
  • Rev Recd Date: 2025-06-06
  • Available Online: 2025-07-22
  • Laser-driven high-brightness betatron radiation has great potentials for its broad applications in the detection of ultrafast processes (such as shock waves or implosion processes) in high energy density physics. Here a tube-like gas-cell target is proposed to generate a near-critical-density (NCD) plasma, which has a sharped rising edge with a length scale of hundreds of μm. Such a gas-cell target has the advantages of low back pressure and small jet volume. Moreover, due to the confinement of the gas chamber walls, it can more stably generate a plateau-shaped gas density distribution. Particle-in-cell (PIC) simulations of the the petawatt femtosecond laser interacting with such a NCD plasma were carried out to study the electron acceleration as well as the betatron radiation. It was shown that, with the appropriate gas density and pulse duration, a steady plasma channel can be well formed. In the channel, the electrons firstly undergo the wakefield acceleration. Then these energetic electrons directly interact with the laser tail, where the efficient betatron resonance and the direct laser acceleration happen, thus resulting in the great enhancement of both the yield and cut-off energy. The transverse oscillation of energetic electrons in the plasma channel leads to the production of high brightness betatron radiation, which has a critical photon energy of 8keV and a brightness of $ 1.75\times {10}^{20}\;\mathrm{p}\mathrm{h}\cdot {\mathrm{s}}^{-1}\cdot {\mathrm{mm}}^{-2}\cdot {\mathrm{m}\mathrm{rad}}^{-2}\cdot {\left(0.1\mathrm{{\text{%}}}\mathrm{b}\mathrm{w}\right)}^{-1} $. The influences of the gas density and laser pulse duration on the betatron radiation were also identified. These results provide an effective path for optimizing the generation of high brightness betatron radiation using the petawatt femtosecond lasers.
  • loading
  • [1]
    Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond x rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
    [2]
    鲁瑜, 张昊, 张亮琪, 等. 基于激光等离子体的X/γ辐射研究进展[J]. 强激光与粒子束, 2023, 35:012006

    Lu Yu, Zhang Hao, Zhang Liangqi, et al. Research progress of X/γ photon emission in laser-plasma interaction[J]. High Power Laser and Particle Beams, 2023, 35: 012006
    [3]
    Mahieu B, Jourdain N, Ta Phuoc K, et al. Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source[J]. Nature Communications, 2018, 9: 3276. doi: 10.1038/s41467-018-05791-4
    [4]
    Ping Y, Hicks D G, Yaakobi B, et al. A platform for x-ray absorption fine structure study of dynamically compressed materials above 1 mbar[J]. Review of Scientific Instruments, 2013, 84: 123105. doi: 10.1063/1.4841935
    [5]
    Ravasio A, Koenig M, Le Pape S, et al. Hard x-ray radiography for density measurement in shock compressed matter[J]. Physics of Plasmas, 2008, 15: 060701. doi: 10.1063/1.2928156
    [6]
    Wood J C, Chapman D J, Poder K, et al. Ultrafast imaging of laser driven shock waves using betatron x-rays from a laser wakefield accelerator[J]. Scientific Reports, 2018, 8: 11010. doi: 10.1038/s41598-018-29347-0
    [7]
    Döpp A, Hehn L, Götzfried J, et al. Quick x-ray microtomography using a laser-driven betatron source[J]. Optica, 2018, 5(2): 199-203. doi: 10.1364/OPTICA.5.000199
    [8]
    Zhang Z M, Zhang B, Hong W, et al. Enhanced x-rays from resonant betatron oscillations in laser Wakefield with external wigglers[J]. Plasma Physics and Controlled Fusion, 2016, 58: 105009. doi: 10.1088/0741-3335/58/10/105009
    [9]
    Ferri J, Corde S, Döpp A, et al. High-brilliance betatron γ-ray source powered by laser-accelerated electrons[J]. Physical Review Letters, 2018, 120: 254802. doi: 10.1103/PhysRevLett.120.254802
    [10]
    Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81(3): 1229-1285. doi: 10.1103/RevModPhys.81.1229
    [11]
    陈民, 刘峰, 李博原, 等. 激光等离子体尾波加速器的发展和展望[J]. 强激光与粒子束, 2020, 32:092001

    Chen Min, Liu Feng, Li Boyuan, et al. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 092001
    [12]
    Aniculaesei C, Ha T, Yoffe S, et al. The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator[J]. Matter and Radiation at Extremes, 2024, 9: 014001. doi: 10.1063/5.0161687
    [13]
    Götzfried J, Döpp A, Gilljohann M F, et al. Physics of high-charge electron beams in laser-plasma wakefields[J]. Physical Review X, 2020, 10: 041015.
    [14]
    Cipiccia S, Islam M R, Ersfeld B, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Physics, 2011, 7(11): 867-871. doi: 10.1038/nphys2090
    [15]
    Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36
    [16]
    冷雨欣. 上海超强超短激光实验装置[J]. 中国激光, 2019, 46:0100001 doi: 10.3788/CJL201946.0100001

    Leng Yuxin. Shanghai superintense ultrafast laser facility[J]. Chinese Journal of Lasers, 2019, 46: 0100001 doi: 10.3788/CJL201946.0100001
    [17]
    Zeng Xiaoming, Zhou Kainan, Zuo Yanlei, et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification[J]. Optics Letters, 2017, 42(10): 2014-2017. doi: 10.1364/OL.42.002014
    [18]
    Cikhardt J, Gyrdymov M, Zähter S, et al. Characterization of bright betatron radiation generated by direct laser acceleration of electrons in plasma of near critical density[J]. Matter and Radiation at Extremes, 2024, 9: 027201. doi: 10.1063/5.0181119
    [19]
    Tan J H, Li Y F, Li D Z, et al. Observation of high efficiency Betatron radiation from femtosecond petawatt laser irradiated near critical plasmas[DB/OL]. arXiv preprint arXiv: 2109.12467, 2021.
    [20]
    Zhang Z M, Wu Y C, Zhang X H, et al. Inhibition of electron refluxing in laser-gas interactions for enhanced positron generation[J]. Plasma Physics and Controlled Fusion, 2022, 64: 095015. doi: 10.1088/1361-6587/ac7ee9
    [21]
    Ammosov M V, Delone N B, Krainov V P. Tunnel ionization of complex atoms and atomic ions in electromagnetic field[C]//Proceedings of SPIE 0664, High Intensity Laser Processes. 1986: 138-141.
    [22]
    Chen Min, Pukhov A, Yu Tongpu, et al. Radiation reaction effects on ion acceleration in laser foil interaction[J]. Plasma Physics and Controlled Fusion, 2011, 53: 014004. doi: 10.1088/0741-3335/53/1/014004
    [23]
    Gahn C, Tsakiris G D, Pukhov A, et al. Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels[J]. Physical Review Letters, 1999, 83(23): 4772-4775. doi: 10.1103/PhysRevLett.83.4772
    [24]
    Pukhov A, Sheng Z M, Meyer-ter-Vehn J. Particle acceleration in relativistic laser channels[J]. Physics of Plasmas, 1999, 6(7): 2847-2854. doi: 10.1063/1.873242
    [25]
    Lu W, Tzoufras M, Joshi C, et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime[J]. Physical Review Special Topics-Accelerators and Beams, 2007, 10: 061301. doi: 10.1103/PhysRevSTAB.10.061301
    [26]
    Esarey E, Shadwick B A, Catravas P, et al. Synchrotron radiation from electron beams in plasma-focusing channels[J]. Physical Review E, 2002, 65: 056505. doi: 10.1103/PhysRevE.65.056505
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (52) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return