Turn off MathJax
Article Contents
Wang Zichang, Shao Shuoting, Yuan Hongjun, et al. Ross pair-filters stack mixed spectrometer for hard x-ray detection[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250034
Citation: Wang Zichang, Shao Shuoting, Yuan Hongjun, et al. Ross pair-filters stack mixed spectrometer for hard x-ray detection[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250034

Ross pair-filters stack mixed spectrometer for hard x-ray detection

doi: 10.11884/HPLPB202537.250034
  • Received Date: 2025-02-25
  • Accepted Date: 2025-06-04
  • Rev Recd Date: 2025-06-17
  • Available Online: 2025-07-02
  • Ross pair and filters stack spectrometers are commonly used to detect hard X-ray spectrum. The results of filters stack spectrometer are highly sensitive to the profile of pre-estimated spectrum, while Ross pair is limited to discrete spectrum. Here we provide a Ross pair- filters stack mixed spectrometer, which combining the advantages of traditional filter stack spectrometers and Ross pairs. Each layer of the filter in the traditional filters stack spectrometer has been replaced with a Ross filters pair. Thus the discrete spectrum given by Ross pair can be used as the pre-estimated spectrum for the filters stack to solve the entire x-ray spectrum. Numerical and physical experiments using x-ray tube confirm that the present mixed spectrometer can provide more accurate spectral structures compared to traditional filter stack spectrometers. The compact and lightweight advantages make it widely applicable in hard x-ray spectral measurements.
  • loading
  • [1]
    Hurricane O A, Patel P K, Betti R, et al. Physics principles of inertial confinement fusion and U. S. program overview[J]. Reviews of Modern Physics, 2023, 95: 025005. doi: 10.1103/RevModPhys.95.025005
    [2]
    Dimitri B. Inertial confinement fusion: recent results and perspectives[J]. EPJ Web of Conferences, 2024, 310: 00013. doi: 10.1051/epjconf/202431000013
    [3]
    Park H S, Maddox B R, Giraldez E, et al. High-resolution 17-75 keV backlighters for high energy density experiments[J]. Physics of Plasmas, 2008, 15: 072705. doi: 10.1063/1.2957918
    [4]
    Yang Tao, Hu Guangyue, Yuan Peng, et al. Abnormal spectral distortion of a silicon sensor-based single photon counting charge coupled device (PIXIS-XB: 1300R) in detecting laser plasma x-ray source of 20-100 keV[J]. Plasma Physics and Controlled Fusion, 2019, 61: 095008. doi: 10.1088/1361-6587/ab3310
    [5]
    张双根, 黄文忠, 谷渝秋, 等. 用于激光等离子体中X射线测量的单光子计数型CCD的标定[J]. 强激光与粒子束, 2006, 18(1):77-80

    Zhang Shuanggen, Huang Wenzhong, Gu Yuqiu, et al. Calibration of single-photon counting X-ray CCD[J]. High Power Laser and Particle Beams, 2006, 18(1): 77-80
    [6]
    熊勇, 黄文忠, 张双根, 等. 光子计数型CCD测量激光等离子体X射线[J]. 强激光与粒子束, 2007, 19(2):271-273

    Xiong Yong, Huang Wenzhong, Zhang Shuanggen, et al. Measurement of X ray in interaction of laser plasmas by photon counting CCD[J]. High Power Laser and Particle Beams, 2007, 19(2): 271-273
    [7]
    闫永宏, 赵宗清, 吴玉迟, 等. 单光子计数型CCD的蒙特卡罗模拟[J]. 强激光与粒子束, 2013, 25(1):211-214 doi: 10.3788/HPLPB20132501.0211

    Yan Yonghong, Zhao Zongqing, Wu Yuchi, et al. Monte Carlo simulation on single photon counting charge coupled device[J]. High Power Laser and Particle Beams, 2013, 25(1): 211-214 doi: 10.3788/HPLPB20132501.0211
    [8]
    Yan Yonghong, Wei Lai, Wen Xianlun, et al. Calibration and Monte Carlo simulation of a single-photon counting charge-coupled device for single-shot X-ray spectrum measurements[J]. Chinese Optics Letters, 2013, 11: 110401. doi: 10.3788/col201311.110401
    [9]
    Hudson L T, Henins A, Deslattes R D, et al. A high-energy x-ray spectrometer diagnostic for the OMEGA laser[J]. Review of Scientific Instruments, 2002, 73(6): 2270-2275. doi: 10.1063/1.1476715
    [10]
    Yu Minghai, Hu Guangyue, An Ning, et al. Hard x-ray transmission curved crystal spectrometers (10-100 keV) for laser fusion experiments at the ShenGuang-III laser facility[J]. High Power Laser Science and Engineering, 2016, 4: e2. doi: 10.1017/hpl.2015.36
    [11]
    Chen C D, King J A, Key M H, et al. A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters[J]. Review of Scientific Instruments, 2008, 79: 10E305. doi: 10.1063/1.2964231
    [12]
    于明海, 谭放, 闫永宏, 等. 用于激光产生的高能X射线源能谱诊断的滤片堆栈谱仪的研制[J]. 原子能科学技术, 2017, 51(6):1090-1095 doi: 10.7538/yzk.2017.51.06.1090

    Yu Minghai, Tan Fang, Yan YongHong, et al. Development of filter stack spectrometer for spectrum measurement of X ray generated by laser[J]. Atomic Energy Science and Technology, 2017, 51(6): 1090-1095 doi: 10.7538/yzk.2017.51.06.1090
    [13]
    Maddox B R, Park H S, Remington B A, et al. High-energy x-ray backlighter spectrum measurements using calibrated image plates[J]. Review of Scientific Instruments, 2011, 82: 023111. doi: 10.1063/1.3531979
    [14]
    Wen JiaXing, Ma Ge, Yu Minghai, et al. Optimized online filter stack spectrometer for ultrashort X-ray pulses[J]. Nuclear Science and Techniques, 2024, 35: 48. doi: 10.1007/s41365-024-01391-8
    [15]
    Song Honghu, Wu Zhen, Zhang Hui, et al. A simulation optimization design of the filter stack spectrometer for laser-plasma interaction experiment[J]. Journal of Instrumentation, 2023, 18: P03012. doi: 10.1088/1748-0221/18/03/P03012
    [16]
    Meadowcroft A L, Bentley C D, Stott E N. Evaluation of the sensitivity and fading characteristics of an image plate system for x-ray diagnostics[J]. Review of Scientific Instruments, 2008, 79: 113102. doi: 10.1063/1.3013123
    [17]
    Alvarez M A, Wolfe B T, Wong C S, et al. Machine learning based unfolding of x-ray spectra from filter stack spectrometer data[J]. Review of Scientific Instruments, 2024, 95: 085101. doi: 10.1063/5.0216759
    [18]
    肖庭延, 于慎根, 王彦飞. 反问题的数值解法[M]. 北京: 科学出版社, 2003

    Xiao Tingyan, Yu Shengen, Wang Yanfei, et al. Numerical Methods for Inverse Problems[M]. Beijing: Science Press, 2003
    [19]
    Matzke M. Unfolding of particle spectra[C]//Proceedings of SPIE 2867, International Conference Neutrons in Research and Industry. 1997: 598-607.
    [20]
    Reginatto M. Overview of spectral unfolding techniques and uncertainty estimation[J]. Radiation Measurements, 2010, 45(10): 1323-1329. doi: 10.1016/j.radmeas.2010.06.016
    [21]
    Agostinelli S, Allison J, Amako K, et al. GEANT4—a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250-303.
    [22]
    Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(1): 270-278. doi: 10.1109/TNS.2006.869826
    [23]
    Allison J, Amako K, Apostolakis J, et al. Recent developments in GEANT4[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 835: 186-225.
    [24]
    del Río M S, Dejus R J. Status of XOP: an x-ray optics software toolkit[C]//Proceedings of SPIE 5536, Advances in Computational Methods for X-Ray and Neutron Optics. 2004: 171-174.
    [25]
    del Río M S, Dejus R J. XOP 2.1—a new version of the x-ray optics software toolkit[J]. AIP Conference Proceedings, 2004, 705(1): 784-787.
    [26]
    Boone J M, Seibert J A. Accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV[J]. Medical Physics, 1997, 24(11): 1661-1670. doi: 10.1118/1.597953
    [27]
    Tommasini R, Park H S, Patel P, et al. Development of Compton radiography using high-Z backlighters produced by ultra-intense lasers[J]. AIP Conference Proceedings, 2007, 926(1): 248-258.
    [28]
    Malka G, Miquel J L. Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target[J]. Physical Review Letters, 1996, 77(1): 75-78. doi: 10.1103/PhysRevLett.77.75
    [29]
    Haines M G, Wei M S, Beg F N, et al. Hot-electron temperature and laser-light absorption in fast ignition[J]. Physical Review Letters, 2009, 102: 045008. doi: 10.1103/PhysRevLett.102.045008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(5)

    Article views (25) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return