Turn off MathJax
Article Contents
An Chenxiang, Zhou Ning, Chen Kun, et al. Design of X-band coaxial gyrotron cavity driven by intense relativistic electron beam[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250042
Citation: An Chenxiang, Zhou Ning, Chen Kun, et al. Design of X-band coaxial gyrotron cavity driven by intense relativistic electron beam[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250042

Design of X-band coaxial gyrotron cavity driven by intense relativistic electron beam

doi: 10.11884/HPLPB202537.250042
  • Received Date: 2025-03-08
  • Accepted Date: 2025-06-01
  • Rev Recd Date: 2025-06-01
  • Available Online: 2025-06-16
  • Under the driving of explosive-emission cathodes, relativistic gyrotrons frequently suffer from virtual cathode phenomena induced by ultrahigh beam currents (>300 A), where electron beams readily impact the inner conductor surfaces, accompanied by unintended excitations of cyclotron resonance and backward-wave oscillation (BWO) modes. This study systematically investigates the electromagnetic characteristics of an X-band coaxial gyrotron cavity driven by an intense relativistic electron beam (IREB), combining theoretical analysis with three-dimensional particle-in-cell (PIC) simulations. The results demonstrate that stable IREB transmission and TE01 single-mode operation can be achieved through cavity geometry optimization and electron beam parameter matching. The cavity quality factor (Qcav) plays a critical role in suppressing parasitic mode competition: TE21-BWO modes are excited when Qcav<65, while TE31 cyclotron resonance modes emerge when Qcav>90. Stable TE01 single-mode oscillation with an output power of 35 MW (voltage: 300 kV, current: 500 A, transverse-to-longitudinal velocity ratio: 1.2) and efficiency of 34.4% are maintained within the Qcav range of 65-90. Further studies reveal that the cavity exhibits significant robustness against electron beam velocity spread (Δβ<25%), providing critical insights for high-power microwave source design.
  • loading
  • [1]
    肖仁珍. 相对论返波管研究进展[J]. 现代应用物理, 2022, 13:020101 doi: 10.12061/j.issn.2095-6223.2022.020101

    Xiao Renzhen. Research progress of relativistic backward wave oscillator[J]. Modern Applied Physics, 2022, 13: 020101 doi: 10.12061/j.issn.2095-6223.2022.020101
    [2]
    Chen Kun, Xiao Renzhen, Zhai Yonggui, et al. Asymmetric mode competition in an X-band dual-mode relativistic backward wave oscillator[J]. IEEE Transactions on Electron Devices, 2024, 71(7): 4300-4305. doi: 10.1109/TED.2024.3397633
    [3]
    Miao Tianze, Xiao Renzhen, Shi Yanchao, et al. Experimental demonstration of dual-mode relativistic backward wave oscillator with a beam filtering ring packaged with permanent magnet[J]. IEEE Electron Device Letters, 2023, 44(4): 662-665. doi: 10.1109/LED.2023.3242778
    [4]
    Ju Jinchuan, Ge Xingjun, Zhang Wei, et al. Coherent combining of phase-steerable high power microwaves generated by two X-band triaxial klystron amplifiers with pulsed magnetic fields[J]. Physical Review Letters, 2023, 130: 085002. doi: 10.1103/PhysRevLett.130.085002
    [5]
    曹亦兵, 孙钧, 宋志敏, 等. C波段长脉冲相对论返波管设计与实验[J]. 强激光与粒子束, 2018, 30:053004 doi: 10.11884/HPLPB201830.170470

    Cao Yibin, Sun Jun, Song Zimin, et al. Design and experiment of long-pulse C-band relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2018, 30: 053004 doi: 10.11884/HPLPB201830.170470
    [6]
    王东阳, 滕雁, 史彦超, 等. Ka波段TM02模式低磁场相对论返波管初步实验研究[J]. 强激光与粒子束, 2018, 30:073003 doi: 10.11884/HPLPB201830.170436

    Wang Dongyang, Teng Yan, Shi Yanchao, et al. Preliminary experimental study on a Ka-band RBWO operating at TM02 mode with low guiding magnetic field[J]. High Power Laser and Particle Beams, 2018, 30: 073003 doi: 10.11884/HPLPB201830.170436
    [7]
    Westerhof E, Austin M E, Kubo S, et al. Summary of EC-17: the 17th joint workshop on electron cyclotron emission and electron cyclotron resonance heating (Deurne, The Netherlands, 7–10 May 2012)[J]. Nuclear Fusion, 2013, 53: 027002. doi: 10.1088/0029-5515/53/2/027002
    [8]
    Omori T, Henderson M A, Albajar F, et al. Overview of the ITER EC H&CD system and its capabilities[J]. Fusion Engineering and Design, 2011, 86(6/8): 951-954.
    [9]
    Kasugai A, Sakamoto K, Takahashi K, et al. Steady-state operation of 170 GHz–1 MW gyrotron for ITER[J]. Nuclear Fusion, 2008, 48: 054009. doi: 10.1088/0029-5515/48/5/054009
    [10]
    胡林林, 孙迪敏, 黄麒力, 等. 105/140 GHz双频兆瓦回旋管实现1.0 MW脉冲输出[J]. 强激光与粒子束, 2023, 35:023001 doi: 10.11884/HPLPB202335.220388

    Hu Linlin, Sun Dimin, Huang Qili, et al. 1.0 MW pulse power achieved in 105/140 GHz dual-frequency MW-level gyrotron[J]. High Power Laser and Particle Beams, 2023, 35: 023001 doi: 10.11884/HPLPB202335.220388
    [11]
    Granatstein V L, Herndon M, Sprangle P, et al. Gigawatt microwave from an intense relativistic electron beam[J]. Plasma Physics, 1975, 17(1): 23-28. doi: 10.1088/0032-1028/17/1/003
    [12]
    Zaitsev N I, Ginzburg N S, Zavol’skii N A, et al. Highly efficient relativistic SHF gyrotron with a microsecond pulse width[J]. Technical Physics Letters, 2001, 27(4): 266-270. doi: 10.1134/1.1370197
    [13]
    Zaitsev N I, Ginzburg N S, Ilyakov E V, et al. X-band high-efficiency relativistic gyrotron[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 840-845. doi: 10.1109/TPS.2002.801555
    [14]
    Kartikeyan M V, Borie E, Thumm M K A. Gyrotrons: high-power microwave and millimeter wave technology[M]. Berlin: Springer, 2004: 33.
    [15]
    张点, 安晨翔, 张军, 等. 毫米波回旋速调管放大器的自洽非线性数值模拟[J]. 强激光与粒子束, 2021, 33:093002 doi: 10.11884/HPLPB202133.210129

    Zhang Dian, An Chenxiang, Zhang Jun, et al. Self-consistent nonlinear numerical simulation of millimeter wave gyro-klystron amplifiers[J]. High Power Laser and Particle Beams, 2021, 33: 093002 doi: 10.11884/HPLPB202133.210129
    [16]
    顾玲, 刘飞, 刘迎辉. 复合腔回旋管高频结构[J]. 强激光与粒子束, 2014, 26:013008 doi: 10.3788/HPLPB20142601.13008

    Gu Ling, Liu Fei, Liu Yinghui. High-frequency structure for complex cavity gyrotron with gradual transition[J]. High Power Laser and Particle Beams, 2014, 26: 013008 doi: 10.3788/HPLPB20142601.13008
    [17]
    Dumbrajs O, Liu Shenggang. Kinetic theory of electron-cyclotron resonance masers with asymmetry of the electron beam in a cavity[J]. IEEE Transactions on Plasma Science, 1992, 20(3): 126-132. doi: 10.1109/27.142811
    [18]
    An Chenxiang, Zhang Dian, Zhang Jjun, et al. Theoretical analysis and Vsim simulation of a low-voltage high-efficiency 250 GHz gyrotron[J]. Physics of Plasmas, 2018, 25: 023108. doi: 10.1063/1.5008762
    [19]
    Danly B G, Temkin R J. Generalized nonlinear harmonic gyrotron theory[J]. Physics of Fluids, 1986, 29(2): 561-567. doi: 10.1063/1.865446
    [20]
    An Chenxiang, Zhang Dian, Zhang Jun, et al. Theoretical analysis and PIC simulation of a 220-GHz second-harmonic confocal waveguide gyro-TWT amplifier[J]. IEEE Transactions on Electron Devices, 2019, 66(9): 4016-4021. doi: 10.1109/TED.2019.2925895
    [21]
    Sun Wei, Yu Sheng, Wang Zhipeng, et al. Linear and nonlinear analyses of a 0.34-THz confocal waveguide gyro-TWT[J]. IEEE Transactions on Plasma Science, 2018, 46(3): 511-517. doi: 10.1109/TPS.2018.2794380
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (30) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return