Turn off MathJax
Article Contents
Chen Zhijun, Zhang Liangjian, Zhnag Qunli, et al. Research on decoupled temperature control of multi-spot laser solid-state phase transformation based on ADRC algorithm[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250045
Citation: Chen Zhijun, Zhang Liangjian, Zhnag Qunli, et al. Research on decoupled temperature control of multi-spot laser solid-state phase transformation based on ADRC algorithm[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250045

Research on decoupled temperature control of multi-spot laser solid-state phase transformation based on ADRC algorithm

doi: 10.11884/HPLPB202537.250045
  • Received Date: 2025-03-12
  • Accepted Date: 2025-06-13
  • Rev Recd Date: 2026-06-18
  • Available Online: 2025-06-30
  • In view of the limitations associated with traditional single-spot laser solid-state phase transformation temperature control methods in complex curved workpieces, this paper proposes a Multi-input Multi-output (MIMO) temperature decoupling control strategy based on Active Disturbance Rejection Control (ADRC). Firstly, a finite element model of multi-spot laser-induced solid-state phase transformation was developed, and a model-order reduction method was applied to extract the key dynamic characteristics of the system, significantly reducing computational complexity and laying a foundation for effective control. Subsequently, to address the high-frequency jitter problem encountered by the conventional fal function within small-error regions, an improved bfal function based on Bernstein polynomials was proposed, thereby enhancing system observation accuracy and disturbance rejection capability. Moreover, an improved Particle Swarm Optimization (PSO) algorithm was utilized for the parameter tuning of ADRC controllers, effectively accelerating the optimization process. Finally, co-simulations conducted on the MATLAB/Simulink and COMSOL platforms demonstrated that the proposed PSO-ADRC controller achieves superior performance in terms of response speed, overshoot reduction, and steady-state accuracy compared to the conventional PID and standard ADRC methods. The method thus provides an efficient and precise solution for multi-spot laser solid-state phase transformation temperature control in complex curved workpieces.
  • loading
  • [1]
    Zhan Jianbin, Wu Jinzhou, Ma Ruijin, et al. Effect of microstructure on the superelasticity of high-relative-density Ni-rich NiTi alloys fabricated by laser powder bed fusion[J]. Journal of Materials Processing Technology, 2023, 317: 117988. doi: 10.1016/j.jmatprotec.2023.117988
    [2]
    Ji Chen, Li Kun, Zhan Jianbin, et al. The effects and utility of homogenization and thermodynamic modeling on microstructure and mechanical properties of SS316/IN718 functionally graded materials fabricated by laser-based directed energy deposition[J]. Journal of Materials Processing Technology, 2023, 319: 118084. doi: 10.1016/j.jmatprotec.2023.118084
    [3]
    Zhan Jianbin, Wu Jinzhou, Ma Ruijin, et al. Tuning the functional properties by laser powder bed fusion with partitioned repetitive laser scanning: toward editable 4D printing of NiTi alloys[J]. Journal of Manufacturing Processes, 2023, 101: 1468-1481. doi: 10.1016/j.jmapro.2023.07.009
    [4]
    Guo Dongming. High-performance manufacturing[J]. International Journal of Extreme Manufacturing, 2024, 6: 060201. doi: 10.1088/2631-7990/ad7426
    [5]
    Zhao Jiangtao, Li Chang, Zhan Hao, et al. Study on laser quenching of aircraft gears with rectangular beam based on multi-field coupling mechanism[J]. Applied Physics A, 2025, 131: 47. doi: 10.1007/s00339-024-08174-3
    [6]
    Song Jingyu, Huang Hui, Wang Xigui, et al. Status and prospects of surface texturing: design, manufacturing and applications[J]. Surface Science and Technology, 2023, 1: 21. doi: 10.1007/s44251-023-00022-5
    [7]
    秦跃舟, 朱国力. 基于非线性参数整定PI控制算法的激光淬火温度控制研究[J]. 应用激光, 2020, 40(1):110-114

    Qin Yuezhou, Zhu Guoli. Study on laser quenching temperature control based on nonlinear adjusted parameter for PI control[J]. Applied Laser, 2020, 40(1): 110-114
    [8]
    尚军, 李敏娟, 徐宏伟. 基于模糊控制的激光淬火控制算法研究[J]. 应用激光, 2015, 35(1):40-43 doi: 10.3788/AL20153501.0040

    Shang Jun, Li Minjuan, Xu Hongwei. Study on laser quench controlling algorithm based on fussy control[J]. Applied Laser, 2015, 35(1): 40-43 doi: 10.3788/AL20153501.0040
    [9]
    徐小刚. 激光相变硬化数值模拟与温度控制技术研究[D]. 济南: 山东大学, 2022

    Xu Xiaogang. Research on numerical simulation and temperature control technology of laser phase transformation hardening[D]. Jinan: Shandong University, 2022
    [10]
    Lesyk D A, Martinez S, Mordyuk B N, et al. Effects of laser heat treatment combined with ultrasonic impact treatment on the surface topography and hardness of carbon steel AISI 1045[J]. Optics & Laser Technology, 2019, 111: 424-438.
    [11]
    张群莉, 李国昌, 董浩芃, 等. 42CrMo钢激光-电磁感应复合淬火过程应力与变形研究[J]. 表面技术, 2024, 53(21):142-152

    Zhang Qunli, Li Guochang, Dong Haopeng, et al. Stress and deformation of 42CrMo steel during laser-electromagnetic induction hybrid quenching process[J]. Surface Technology, 2024, 53(21): 142-152
    [12]
    Da Silva S L E F. Newton’s cooling law in generalised statistical mechanics[J]. Physica A: Statistical Mechanics and its Applications, 2021, 565: 125539. doi: 10.1016/j.physa.2020.125539
    [13]
    王威, 李少甫, 吴昊, 等. 基于反向传播神经网络PID的高功率微波炉温度控制[J]. 强激光与粒子束, 2024, 36:013010 doi: 10.11884/HPLPB202436.230280

    Wang Wei, Li Shaofu, Wu Hao, et al. Research on temperature control of high power microwave oven based on back propagation neural network PID[J]. High Power Laser and Particle Beams, 2024, 36: 013010 doi: 10.11884/HPLPB202436.230280
    [14]
    Schilders W H A, Vorst H A Rommes J. Model order reduction: theory, research aspects and applications[M]. Berlin: Springer, 2008: 1-10.
    [15]
    蒋耀林. 模型降阶方法[M]. 北京: 科学出版社, 2010: 86-89

    Jiang Yaolin. Model reduction methods[M]. Beijing: Science Press, 2010: 86-89
    [16]
    Castagnotto A, Varona M C, Jeschek L, et al. sss & sssMOR: analysis and reduction of large-scale dynamic systems in MATLAB[J]. at - Automatisierungstechnik, 2017, 65(2): 134-150. doi: 10.1515/auto-2016-0137
    [17]
    韩京清. 从PID技术到“自抗扰控制”技术[J]. 控制工程, 2002, 9(3):13-18 doi: 10.3969/j.issn.1671-7848.2002.03.003

    Han Jingqing. From PID technology to active disturbance rejection control technology[J]. Control Engineering of China, 2002, 9(3): 13-18 doi: 10.3969/j.issn.1671-7848.2002.03.003
    [18]
    Lozgachev G I. On a method of construction of Lyapunov functions[J]. Automation and Remote Control, 1998, 59(10): 1365-1368.
    [19]
    陈志旺, 张子振, 曹玉洁. 自抗扰fal函数改进及在四旋翼姿态控制中的应用[J]. 控制与决策, 2018, 33(10):1901-1907

    Chen Zhiwang, Zhang Zizhen, Cao Yujie. Fal function improvement of ADRC and its application in quadrotor aircraft attitude control[J]. Control and Decision, 2018, 33(10): 1901-1907
    [20]
    李昌龙, 陈松, 吴炫炫, 等. 基于PSO-ELM的316L不锈钢细长管磁粒研磨内表面粗糙度预测模型[J]. 中国表面工程, 2023, 36(2):212-221 doi: 10.11933/j.issn.1007-9289.20220513001

    Li Changlong, Chen Song, Wu Xuanxuan, et al. Inner surface roughness prediction model of 316L stainless steel slender tube by magnetic abrasive finishing based on PSO-ELM[J]. China Surface Engineering, 2023, 36(2): 212-221 doi: 10.11933/j.issn.1007-9289.20220513001
    [21]
    Li T Y, Yorke J A. Period three implies chaos[J]. The American Mathematical Monthly, 1975, 82(10): 985-992. doi: 10.1080/00029890.1975.11994008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (9) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return