Turn off MathJax
Article Contents
Yuan Shuo, Zhang Xiaoping, Li Qing. A novel low-ripple adjustable DC regulated power supply with single-phase AC input and control strategy[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250051
Citation: Yuan Shuo, Zhang Xiaoping, Li Qing. A novel low-ripple adjustable DC regulated power supply with single-phase AC input and control strategy[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250051

A novel low-ripple adjustable DC regulated power supply with single-phase AC input and control strategy

doi: 10.11884/HPLPB202537.250051
  • Received Date: 2025-03-21
  • Accepted Date: 2025-07-29
  • Rev Recd Date: 2025-08-12
  • Available Online: 2025-08-20
  • Background
    Single-phase AC-input low-ripple DC regulated power supplies are critical for sensitive applications. However, conventional designs often suffer from complex power circuit configurations, increasing cost and size while potentially compromising reliability. Achieving simultaneously low output voltage ripple, high steady-state accuracy, and wide output voltage adjustability remains a significant challenge in power electronics.
    Purpose
    This study aims to overcome the limitations of existing topologies by proposing a novel single-phase AC-input low-ripple adjustable DC regulated power supply circuit. Furthermore, it develops a dedicated advanced control strategy to meet stringent low-ripple and high-stability performance requirements.
    Methods
    The fundamental principles of the proposed topology were analyzed, and its mathematical model established to characterize voltage transmission. A composite control scheme integrating reference output voltage amplitude self-compensation using improved Iterative Learning Control (ILC), and a dual-loop Proportional Complex Integral (PCI) control structure, was designed for precise low-ripple regulation and stability. Effectiveness was validated via simulation and experimental testing on a prototype.
    Results
    Validation confirmed successful operation. Comparative analysis demonstrated the topology's advantages: simpler/compact structure, wide adjustable output voltage, significantly reduced ripple, and improved steady-state accuracy. The control strategy effectively ensured stability and met performance targets.
    Conclusions
    The combined novel topology and advanced control provide a viable solution for high-quality single-phase AC-input adjustable DC supplies.
  • loading
  • [1]
    周京华, 孟祥飞, 陈亚爱, 等. 基于新能源发电的电解水制氢直流电源研究[J]. 太阳能学报, 2022, 43(6):389-397

    Zhou Jinghua, Meng Xiangfei, Chen Yaai, et al. Research on DC power supply for hydrogen production from electrolytic water based on new energy generation[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 389-397
    [2]
    张鑫宇, 樊艳芳, 马健, 等. 适用于光伏直流升压变换器的故障诊断及保护策略[J]. 太阳能学报, 2022, 43(11):68-77

    Zhang Xinyu, Fan Yanfang, Ma Jian, et al. Fault diagnosis and protection strategy for photovoltaic DC-DC converter[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 68-77
    [3]
    Han Xiao, Yao Xuliang, Liao Yuefeng. Full operating range optimization design method of LLC resonant converter in marine DC power supply system[J]. Journal of Marine Science and Engineering, 2023, 11: 2142. doi: 10.3390/jmse11112142
    [4]
    Zhang Daning, Xu Lulin, Tian Wenrui, et al. A fast dielectric response measurement instrument with dynamic power supply tracking and active suppression of temperature fluctuations[J]. IEEE Transactions on Industrial Electronics, 2023, 70(12): 12839-12850. doi: 10.1109/TIE.2023.3234148
    [5]
    李亚维, 谢敏, 蓝欣, 等. 200kV低纹波高稳定度直流高压电源[J]. 强激光与粒子束, 2016, 28:015016

    Li Yawei, Xie Min, Lan Xin, et al. A 200kV high voltage DC power supply with high stability and low ripple[J]. High Power Laser and Particle Beams, 2016, 28: 015016
    [6]
    Deblecker O, Moretti A, Vallée F. Comparative study of soft-switched isolated DC-DC converters for auxiliary railway supply[J]. IEEE Transactions on Power Electronics, 2008, 23(5): 2218-2229. doi: 10.1109/TPEL.2008.2001879
    [7]
    Wang Zhishuang, Wang Ping, Li Bo, et al. A bidirectional DC-DC converter with high voltage conversion ratio and zero ripple current for battery energy storage system[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 8012-8027. doi: 10.1109/TPEL.2020.3048043
    [8]
    Bandeira D G, Lazzarin T B, Barbi I. High voltage power supply using a T-type parallel resonant DC-DC converter[J]. IEEE Transactions on Industry Applications, 2018, 54(3): 2459-2470. doi: 10.1109/TIA.2018.2792446
    [9]
    Zhang Yi, Zhang Donglai, Li Jie, et al. Bidirectional LCLL resonant converter with wide output voltage range[J]. IEEE Transactions on Power Electronics, 2020, 35(11): 11813-11826. doi: 10.1109/TPEL.2020.2986505
    [10]
    Jang Y, Jovanovic M M. Interleaved boost converter with intrinsic voltage-doubler characteristic for universal-line PFC front end[J]. IEEE Transactions on Power Electronics, 2007, 22(4): 1394-1401. doi: 10.1109/TPEL.2007.900502
    [11]
    Kim H S, Baek J W, Ryu M H, et al. The high-efficiency isolated AC-DC converter using the three-phase interleaved LLC resonant converter employing the Y-connected rectifier[J]. IEEE Transactions on Power Electronics, 2014, 29(8): 4017-4028. doi: 10.1109/TPEL.2013.2290999
    [12]
    阎铁生, 许建平, 高建龙, 等. 低输出电压纹波准单级反激PFC变换器[J]. 电力自动化设备, 2015, 35(9):22-29

    Yan Tiesheng, Xu Jianping, Gao Jianlong, et al. Quasi single-stage flyback PFC converter with low output voltage ripple[J]. Electric Power Automation Equipment, 2015, 35(9): 22-29
    [13]
    Lee S W, Do H L. Boost-integrated two-switch forward AC-DC led driver with high power factor and ripple-free output inductor current[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5789-5796. doi: 10.1109/TIE.2017.2652407
    [14]
    Kouro S, Cortés P, Vargas R, et al. Model predictive control-A simple and powerful method to control power converters[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1826-1838. doi: 10.1109/TIE.2008.2008349
    [15]
    张小平, 朱建林, 唐华平, 等. 一种新型Buck-Boost矩阵变换器[J]. 信息与控制, 2008, 37(1):40-45 doi: 10.3969/j.issn.1002-0411.2008.01.006

    Zhang Xiaoping, Zhu Jianlin, Tang Huaping, et al. A novel Buck-Boost matrix converter[J]. Information and Control, 2008, 37(1): 40-45 doi: 10.3969/j.issn.1002-0411.2008.01.006
    [16]
    Laird H D, Round S D, Duke R M. A frequency-domain analytical model of an uncontrolled single-phase voltage-source rectifier[J]. IEEE Transactions on Industrial Electronics, 2000, 47(3): 525-532. doi: 10.1109/41.847892
    [17]
    Hou Z S, Wang Z. From model-based control to data-driven control: survey, classification and perspective[J]. Information Sciences, 2013, 235: 3-35. doi: 10.1016/j.ins.2012.07.014
    [18]
    孟琦, 侯忠生. 基于周期信号的迭代学习控制在逆变器中的应用[J]. 控制理论与应用, 2016, 33(3):289-294 doi: 10.7641/CTA.2016.50258

    Meng Qi, Hou Zhongsheng. A novel periodic-signal- based iterative learning control method and its application to inverter system[J]. Control Theory & Applications, 2016, 33(3): 289-294 doi: 10.7641/CTA.2016.50258
    [19]
    Bojoi R I, Griva G, Bostan V, et al. Current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame[J]. IEEE Transactions on Power Electronics, 2005, 20(6): 1402-1412. doi: 10.1109/TPEL.2005.857558
    [20]
    郭小强, 邬伟扬, 赵清林, 等. 三相并网逆变器比例复数积分电流控制技术[J]. 中国电机工程学报, 2009, 29(15):8-14 doi: 10.3321/j.issn:0258-8013.2009.15.002

    Guo Xiaoqiang, Wu Weiyang, Zhao Qinglin, et al. Current regulation for three-phase grid-connected inverters based on proportional complex integral control[J]. Proceedings of the CSEE, 2009, 29(15): 8-14 doi: 10.3321/j.issn:0258-8013.2009.15.002
    [21]
    干天助, 梁理程, 陈延礼, 等. 基于改进PCI控制器的光伏并网逆变器的直流分量抑制策略[J]. 太阳能学报, 2022, 43(7):93-100

    Gan Tianzhu, Liang Licheng, Chen Yanli, et al. DC component suppression of PV grid-connected inverter with improved PCI controller[J]. Acta Energiae Solaris Sinica, 2022, 43(7): 93-100
    [22]
    李啸骢, 侯立亮, 罗雪丽, 等. 三相逆变并网系统的分数阶建模与控制器设计研究[J]. 太阳能学报, 2023, 44(3):415-424

    Li Xiaocong, Hou Liliang, Luo Xueli, et al. Research on fractional modeling and controller design of three-phase inverter grid-connected system[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 415-424
    [23]
    刘世豪, 慕振成, 周文中, 等. 基于Simulink大功率电子管放大器仿真[J]. 强激光与粒子束, 2015, 27:095104 doi: 10.11884/HPLPB201527.095104

    Liu Shihao, Mu Zhencheng, Zhou Wenzhong, et al. Simulation on high-power tetrode amplifier based on Similink[J]. High Power Laser and Particle Beams, 2015, 27: 095104 doi: 10.11884/HPLPB201527.095104
    [24]
    程惠, 任勇峰, 王强. 电源纹波的测量及抑制[J]. 电源技术, 2012, 36(12):1899-1900,1921 doi: 10.3969/j.issn.1002-087X.2012.12.040

    Cheng Hui, Ren Yongfeng, Wang Qiang. Measurement and suppression of power supply ripple[J]. Chinese Journal of Power Sources, 2012, 36(12): 1899-1900,1921 doi: 10.3969/j.issn.1002-087X.2012.12.040
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(7)

    Article views (46) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return