Turn off MathJax
Article Contents
Du Yuhong, Li Yuanyuan, Zhang Yao, et al. Design of microwave plasma reactor based on compressed electric field[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250059
Citation: Du Yuhong, Li Yuanyuan, Zhang Yao, et al. Design of microwave plasma reactor based on compressed electric field[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250059

Design of microwave plasma reactor based on compressed electric field

doi: 10.11884/HPLPB202537.250059
  • Received Date: 2025-04-01
  • Accepted Date: 2025-06-16
  • Rev Recd Date: 2025-06-08
  • Available Online: 2025-07-07
  • Microwave plasma has shown significant advantages in the fields of materials synthesis and chemical catalysis due to its high electron density and power utilization efficiency. To solve the problem that the small reaction area of traditional reactor limits its large-scale application, a three-prism microwave plasma reactor structure is innovatively proposed based on the principle of compressed waveguide. The design adopts a three-port symmetric configuration and introduces a compressed waveguide structure inside the cavity to achieve effective superposition and enhancement of the electric field. In addition, the influence of the port positions and microwave phases on the reflection coefficient and electric field distribution characteristics inside the cavity is systematically analyzed by using the multi-physical field coupling calculation method. The results show that optimizing the port position can reduce the reflection coefficient and improve the efficiency of energy utilization, regulating the port phase can effectively enhance the superposition effect of the electric field, so that the electric field is concentrated and widely distributed in the area of the quartz tube, and the peak field strength is as high as 1.64×105 V/m, which can satisfy the excitation conditions of the large-area plasma, and lays a foundation for the subsequent research of microwave plasma chemical reaction.
  • loading
  • [1]
    Bárdoš L, Baránková H. Microwave plasma sources and methods in processing technology[M]. Hoboken: John Wiley & Sons, Inc. , 2022.
    [2]
    Bhat K S, Sreedevi K, Ravi M. Thermal analysis of electron gun for travelling wave tubes[J]. Applied Surface Science, 2006, 253(2): 679-682. doi: 10.1016/j.apsusc.2005.12.154
    [3]
    Siores E, Do Rego D. Microwave applications in materials joining[J]. Journal of Materials Processing Technology, 1995, 48(1/4): 619-625.
    [4]
    曾凯凯, 莫荣珍, 李宇浩, 等. 等离子表面处理在汽车密封条粘接工艺上的应用[J]. 汽车维修技师, 2024(22):104-106 doi: 10.3969/j.issn.1671-279X.2024.22.050

    Zeng Kaikai, Mo Rongzhen, Li Yuhao, et al. Application of plasma surface treatment in the bonding process of automobile sealing strip[J]. Auto Maintenance, 2024(22): 104-106 doi: 10.3969/j.issn.1671-279X.2024.22.050
    [5]
    Xiao Wei, Huang Kama, He Jianbo, et al. A novel high-efficiency stable atmospheric microwave plasma device for fluid processing based on ridged waveguide[J]. Journal of Physics D: Applied Physics, 2017, 50: 385201. doi: 10.1088/1361-6463/aa82fe
    [6]
    Liu Zhuang, Zhang Wencong, Tao Junwu, et al. A microwave-induced room-temperature atmospheric-pressure plasma jet[J]. IEEE Transactions on Plasma Science, 2019, 47(4): 1749-1753. doi: 10.1109/TPS.2019.2904053
    [7]
    Chan I M, Cheng Wengcheng, Hong F C. Enhanced performance of organic light-emitting devices by atmospheric plasma treatment of indium tin oxide surfaces[J]. Applied Physics Letters, 2002, 80(1): 13-15. doi: 10.1063/1.1428624
    [8]
    傅文杰, 鄢扬. 高功率微波在等离子体填充波导中的传播特性[J]. 强激光与粒子束, 2005, 17(12):1852-1856

    Fu Wenjie, Yan Yang. Propagation characteristics of a high-power microwave in plasma-filled waveguide[J]. High Power Laser and Particle Beams, 2005, 17(12): 1852-1856
    [9]
    Gu Yajun, Lu J, Grotjohn T, et al. Microwave plasma reactor design for high pressure and high power density diamond synthesis[J]. Diamond and Related Materials, 2012, 24: 210-214. doi: 10.1016/j.diamond.2012.01.026
    [10]
    Li X J, Tang W Z, Wang F Y, et al. A compact ellipsoidal cavity type microwave plasma reactor for diamond film deposition[J]. Diamond and Related Materials, 2011, 20(3): 374-379. doi: 10.1016/j.diamond.2011.01.025
    [11]
    Shen Qinghao, Huang Run, Xu Zili, et al. Numerical 3D modeling: microwave plasma torch at intermediate pressure[J]. Applied Sciences, 2020, 10: 5393. doi: 10.3390/app10155393
    [12]
    张瑶圃, 吴丽, 黄卡玛. 一种基于矩形压缩波导的5.8 GHz微波等离子体激发装置[J]. 真空电子技术, 2022(2):82-85,106

    Zhang Yaopu, Wu Li, Huang Kama. 5.8 GHz microwave plasma source based on compression rectangular waveguides[J]. Vacuum Electronics, 2022(2): 82-85,106
    [13]
    Hu Yedai, Zhang Wencong, Han Jiahui, et al. Design and study of a large-scale microwave plasma torch with four ports[J]. Processes, 2023, 11: 2589. doi: 10.3390/pr11092589
    [14]
    周蓉, 杨晓庆. 一种用于激发微波等离子体的新型矩形压缩波导仿真设计[J]. 真空电子技术, 2016(3):51-53,64 doi: 10.3969/j.issn.1002-8935.2016.03.013

    Zhou Rong, Yang Xiaoqing. Simulation design of a novel rectangular compression waveguide for microwave plasma generating[J]. Vacuum Electronics, 2016(3): 51-53,64 doi: 10.3969/j.issn.1002-8935.2016.03.013
    [15]
    Hong Y C, Uhm H S. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels[J]. Physics of Plasmas, 2006, 13: 113501. doi: 10.1063/1.2363348
    [16]
    Kuo S P, Bivolaru D, Lai H, et al. Characteristics of an arc-seeded microwave plasma torch[J]. IEEE Transactions on Plasma Science, 2004, 32(4): 1734-1741. doi: 10.1109/TPS.2004.832517
    [17]
    廖承恩. 微波技术基础[M]. 北京: 国防工业出版社, 1984

    Liao Cheng’en. Fundamentals of microwave technology[M]. Beijing: National Defense Industry Press, 1984
    [18]
    Zuo S S, Yaran M K, Grotjohn T A, et al. Investigation of diamond deposition uniformity and quality for freestanding film and substrate applications[J]. Diamond and Related Materials, 2008, 17(3): 300-305. doi: 10.1016/j.diamond.2007.12.069
    [19]
    Tachibana T, Ando Y, Watanabe A, et al. Diamond films grown by a 60-kW microwave plasma chemical vapor deposition system[J]. Diamond and Related Materials, 2001, 10(9/10): 1569-1572.
    [20]
    Santos T, Valente M A, Monteiro J, et al. Electromagnetic and thermal history during microwave heating[J]. Applied Thermal Engineering, 2011, 31(16): 3255-3261. doi: 10.1016/j.applthermaleng.2011.06.006
    [21]
    Wang Nan, Yu Jianglong, Tahmasebi A, et al. Experimental study on microwave pyrolysis of an indonesian low-rank coal[J]. Energy & Fuels, 2014, 28(1): 254-263.
    [22]
    Zhou Jie, Yang Xiaoqing, Ye Jinghua, et al. Arbitrary Lagrangian-Eulerian method for computation of rotating target during microwave heating[J]. International Journal of Heat and Mass Transfer, 2019, 134: 271-285. doi: 10.1016/j.ijheatmasstransfer.2019.01.007
    [23]
    Więckowski A, Korpas P, Krysicki M, et al. Efficiency optimization for phase controlled multi-source microwave oven[J]. International Journal of Applied Electromagnetics and Mechanics, 2014, 44(2): 235-241. doi: 10.3233/JAE-141764
    [24]
    包玉, 何湘, 陈建平, 等. 等离子体对高频微波传输特性的影响[J]. 强激光与粒子束, 2025, 37:013003 doi: 10.11884/HPLPB202537.240296

    Bao Yu, He Xiang, Chen Jianping, et al. Effect of plasma on transmission characteristics of high-frequency microwave[J]. High Power Laser and Particle Beams, 2025, 37: 013003 doi: 10.11884/HPLPB202537.240296
    [25]
    Verma K, Yang Ran, Gan Hao, et al. An integrated numerical and analytical model to understand the effect of relative phase in a dual-port solid-state microwave heating process[J]. Journal of Food Engineering, 2024, 367: 111869. doi: 10.1016/j.jfoodeng.2023.111869
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (12) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return