Citation: | Xu Hao, Zhao Xiaohui, Wang Tao, et al. Study on broadband low-temporal-coherence optical parametric amplification based on 58% deuterated DKDP crystal[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250065 |
[1] |
Lindl J, Landen O, Edwards J, et al. Review of the national ignition campaign 2009-2012[J]. Physics of Plasmas, 2014, 21: 020501. doi: 10.1063/1.4865400
|
[2] |
Fujioka S, Takabe H, Yamamoto N, et al. X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion[J]. Nature Physics, 2009, 5(11): 821-825. doi: 10.1038/nphys1402
|
[3] |
Weber S, Bechet S, Borneis S, et al. P3: an installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2017, 2(4): 149-176. doi: 10.1016/j.mre.2017.03.003
|
[4] |
Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi: 10.13182/FST15-144
|
[5] |
Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, et al. Laser performance of the SG-III laser facility[J]. High Power Laser Science and Engineering, 2016, 4: 03000e21.
|
[6] |
Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
|
[7] |
Gao Yanqi, Cui Yong, Ji Lailin, et al. Development of low-coherence high-power laser drivers for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2020, 5: 065201. doi: 10.1063/5.0009319
|
[8] |
Baumgartner R, Byer R. Optical parametric amplification[J]. IEEE Journal of Quantum Electronics, 1979, 15(6): 432-444. doi: 10.1109/JQE.1979.1070043
|
[9] |
Dorrer C, Hill E M, Zuegel J D. High-energy parametric amplification of spectrally incoherent broadband pulses[J]. Optics Express, 2020, 28(1): 451-471. doi: 10.1364/OE.28.000451
|
[10] |
Lozhkarev V V, Freidman G I, Ginzburg V N, et al. Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd: YLF laser[J]. Laser Physics, 2005, 15(9): 1319-1333.
|
[11] |
孙美智, 毕群玉, 张福领, 等. YCOB晶体非共线相位匹配技术研究[J]. 光学学报, 2011, 31:0119001 doi: 10.3788/AOS201131.0119001
Sun Meizhi, Bi Qunyu, Zhang Fuling, et al. Study on noncollinear phase matching in YCOB crystal[J]. Acta Optica Sinica, 2011, 31: 0119001 doi: 10.3788/AOS201131.0119001
|
[12] |
王杰, 姚建铨, 李喜福, 等. 非线性晶体三波互作用允许参量的修正计算[J]. 光学学报, 2001, 21(2):139-141 doi: 10.3321/j.issn:0253-2239.2001.02.003
Wang Jie, Yao Jianquan, Li Xifu, et al. Amendatory calculation of the acceptance parameters in three-wave interactions[J]. Acta Optica Sinica, 2001, 21(2): 139-141 doi: 10.3321/j.issn:0253-2239.2001.02.003
|
[13] |
刘军, 魏晓峰, 黄小军, 等. BBO, LBO, KDP晶体光参量啁啾脉冲放大特性的比较研究[J]. 强激光与粒子束, 2003, 15(6):555-558
Liu Jun, Wei Xiaofeng, Huang Xiaojuan, et al. Study and comparison on properties of optical parametric chirped pulse amplification of BBO, LBO and KDP[J]. High Power Laser and Particle Beams, 2003, 15(6): 555-558
|
[14] |
Dorrer C. Statistical analysis of incoherent pulse shaping[J]. Optics Express, 2009, 17(5): 3341-3352. doi: 10.1364/OE.17.003341
|
[15] |
Ji Lailin, Zhao Xiaohui, Liu Dong, et al. High-efficiency second-harmonic generation of low-temporal-coherent light pulse[J]. Optics Letters, 2019, 44(17): 4359-4362. doi: 10.1364/OL.44.004359
|
[16] |
张淳耀, 赵晓晖, 高妍琦, 等. 近红外波段宽带时间低相干光参量放大技术[J]. 强激光与粒子束, 2022, 34:031012 doi: 10.11884/HPLPB202234.210267
Zhang Chunyao, Zhao Xiaohui, Gao Yanqi, et al. Near-infrared broadband low-temporal-coherence optical parametric amplification[J]. High Power Laser and Particle Beams, 2022, 34: 031012 doi: 10.11884/HPLPB202234.210267
|