Turn off MathJax
Article Contents
Xu Hao, Zhao Xiaohui, Wang Tao, et al. Study on broadband low-temporal-coherence optical parametric amplification based on 58% deuterated DKDP crystal[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250065
Citation: Xu Hao, Zhao Xiaohui, Wang Tao, et al. Study on broadband low-temporal-coherence optical parametric amplification based on 58% deuterated DKDP crystal[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250065

Study on broadband low-temporal-coherence optical parametric amplification based on 58% deuterated DKDP crystal

doi: 10.11884/HPLPB202537.250065
  • Received Date: 2025-04-07
  • Accepted Date: 2025-05-16
  • Rev Recd Date: 2025-06-16
  • Available Online: 2025-07-05
  • As a new type of laser driver to suppress laser plasma instability, the low-coherence laser driver holds significant research value in the field of laser inertial confinement fusion. To achieve large-bandwidth and high-power low-coherence pulse parametric amplification, this study provides a detailed analysis of the parametric matching characteristics of DKDP crystals with varying deuteration rates under Type-I colinear phase matching conditions. The fundamental parameters, including phase-matching angles, walk-off angles, and parametric bandwidths, are determined. The theoretical parameter bandwidth of the 58% deuterium-doped DKDP crystal is 180 nm. On this basis, a design for broadband low-temporal-coherence optical parametric amplification based on 58%DKDP crystals is proposed, and the theoretical model and the corresponding numerical model are established by the three-wave coupled equations. Furthermore, an experimental investigation of parametric amplification based on 58%-deuterium-doped DKDP crystals is conducted. The center wavelength of the broadband low-coherence signal light is set at 1053 nm, while the pump wavelength is fixed at 532 nm. The spectral width is 40 nm with a gain factor of 2.1. The results show that 58% DKDP crystal has a large gain bandwidth, and combined with the colinear phase-matching method, such crystals are expected to enable large-bandwidth and high-gain amplification of low-coherence light.
  • loading
  • [1]
    Lindl J, Landen O, Edwards J, et al. Review of the national ignition campaign 2009-2012[J]. Physics of Plasmas, 2014, 21: 020501. doi: 10.1063/1.4865400
    [2]
    Fujioka S, Takabe H, Yamamoto N, et al. X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion[J]. Nature Physics, 2009, 5(11): 821-825. doi: 10.1038/nphys1402
    [3]
    Weber S, Bechet S, Borneis S, et al. P3: an installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2017, 2(4): 149-176. doi: 10.1016/j.mre.2017.03.003
    [4]
    Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi: 10.13182/FST15-144
    [5]
    Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, et al. Laser performance of the SG-III laser facility[J]. High Power Laser Science and Engineering, 2016, 4: 03000e21.
    [6]
    Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [7]
    Gao Yanqi, Cui Yong, Ji Lailin, et al. Development of low-coherence high-power laser drivers for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2020, 5: 065201. doi: 10.1063/5.0009319
    [8]
    Baumgartner R, Byer R. Optical parametric amplification[J]. IEEE Journal of Quantum Electronics, 1979, 15(6): 432-444. doi: 10.1109/JQE.1979.1070043
    [9]
    Dorrer C, Hill E M, Zuegel J D. High-energy parametric amplification of spectrally incoherent broadband pulses[J]. Optics Express, 2020, 28(1): 451-471. doi: 10.1364/OE.28.000451
    [10]
    Lozhkarev V V, Freidman G I, Ginzburg V N, et al. Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd: YLF laser[J]. Laser Physics, 2005, 15(9): 1319-1333.
    [11]
    孙美智, 毕群玉, 张福领, 等. YCOB晶体非共线相位匹配技术研究[J]. 光学学报, 2011, 31:0119001 doi: 10.3788/AOS201131.0119001

    Sun Meizhi, Bi Qunyu, Zhang Fuling, et al. Study on noncollinear phase matching in YCOB crystal[J]. Acta Optica Sinica, 2011, 31: 0119001 doi: 10.3788/AOS201131.0119001
    [12]
    王杰, 姚建铨, 李喜福, 等. 非线性晶体三波互作用允许参量的修正计算[J]. 光学学报, 2001, 21(2):139-141 doi: 10.3321/j.issn:0253-2239.2001.02.003

    Wang Jie, Yao Jianquan, Li Xifu, et al. Amendatory calculation of the acceptance parameters in three-wave interactions[J]. Acta Optica Sinica, 2001, 21(2): 139-141 doi: 10.3321/j.issn:0253-2239.2001.02.003
    [13]
    刘军, 魏晓峰, 黄小军, 等. BBO, LBO, KDP晶体光参量啁啾脉冲放大特性的比较研究[J]. 强激光与粒子束, 2003, 15(6):555-558

    Liu Jun, Wei Xiaofeng, Huang Xiaojuan, et al. Study and comparison on properties of optical parametric chirped pulse amplification of BBO, LBO and KDP[J]. High Power Laser and Particle Beams, 2003, 15(6): 555-558
    [14]
    Dorrer C. Statistical analysis of incoherent pulse shaping[J]. Optics Express, 2009, 17(5): 3341-3352. doi: 10.1364/OE.17.003341
    [15]
    Ji Lailin, Zhao Xiaohui, Liu Dong, et al. High-efficiency second-harmonic generation of low-temporal-coherent light pulse[J]. Optics Letters, 2019, 44(17): 4359-4362. doi: 10.1364/OL.44.004359
    [16]
    张淳耀, 赵晓晖, 高妍琦, 等. 近红外波段宽带时间低相干光参量放大技术[J]. 强激光与粒子束, 2022, 34:031012 doi: 10.11884/HPLPB202234.210267

    Zhang Chunyao, Zhao Xiaohui, Gao Yanqi, et al. Near-infrared broadband low-temporal-coherence optical parametric amplification[J]. High Power Laser and Particle Beams, 2022, 34: 031012 doi: 10.11884/HPLPB202234.210267
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (9) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return