Citation: | Shao Yanhua, Xin Chen, Chu Hongyu. Few-shot defect recognition in optical components with deep learning[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250066 |
[1] |
陈彦舟. 激光惯性约束聚变发展态势研究[C]//中国核科学技术进展报告(第八卷)中国核学会2023年学术年会论文集 第7册 核科技情报研究 同位素. 2023: 35-41
Chen Yanzhou. Research on development trends of laser inertial confinement fusion[C]//Proceedings of the Progress Report on China Nuclear Science & Technology (Vol. 8). 2023: 35-41
|
[2] |
史伟. 高精度洁净度检测方法研究[D]. 成都: 四川大学, 2000: 9-15
Shi Wei. Research on hign precision purification testing methods[D]. Chengdu: Sichuan University, 2000: 9-15
|
[3] |
楚红雨. 基于机器视觉的高功率激光装置光学元件表面缺陷检测技术研究[D]. 重庆: 重庆大学, 2011.
|
[4] |
Stowers I F. Optical cleanliness specifications and cleanliness verification[J]. Proceedings of SPIE, 1999, 3782(1): 525-530.
|
[5] |
陈达, 章轩, 赵圣斌, 等. 基于深度学习的激光熔覆层表面缺陷识别研究[J]. 光学学报, 2025, 45: 0915001 doi: 10.3788/AOS250462
Chen Da, Zhang Xuan, Zhao Shengbin, et al. Surface defect recognition of laser cladding layer based on deep learning[J]. Acta Optica Sinica, 2025, 45: 0915001 doi: 10.3788/AOS250462
|
[6] |
刘斌, 王孝坤, 程强, 等. 复杂曲面光学元件高精度面形检测技术概述[J]. 南通大学学报(自然科学版), 2024, 23(1): 1-27
Liu Bin, Wang Xiaokun, Cheng Qiang, et al. Overview of high precision surface measurement for optical element with complex curved surface[J]. Journal of Nantong University (Natural Science Edition), 2024, 23(1): 1-27
|
[7] |
邵延华, 冯玉沛, 张晓强, 等. 基于深度学习的光学元件表面疵病识别[J]. 强激光与粒子束, 2022, 34: 112002 doi: 10.11884/HPLPB202234.220023
Shao Yanhua, Feng Yupei, Zhang Xiaoqiang, et al. Using deep learning for surface defects identification of optical components[J]. High Power Laser and Particle Beams, 2022, 34: 112002 doi: 10.11884/HPLPB202234.220023
|
[8] |
冯虎, 宋克臣, 崔文琦, 等. 基于元学习的带钢表面缺陷小样本语义分割[J]. 东北大学学报(自然科学版), 2024, 45(3): 354-360
Feng Hu, Song Kechen, Cui Wenqi, et al. Few-shot semantic segmentation of strip steel surface defects based on meta-learning[J]. Journal of Northeastern University (Natural Science), 2024, 45(3): 354-360
|
[9] |
范勇, 陈念年, 高玲玲, 等. 大口径精密表面疵病的数字化检测系统[J]. 强激光与粒子束, 2009, 21(7): 1032-1036
Fan Yong, Chen Niannian, Gao Lingling, et al. Digital detection system of surface defects for large aperture optical elements[J]. High Power Laser and Particle Beams, 2009, 21(7): 1032-1036
|
[10] |
Peng Hanyang, Yu Yue, Yu Shiqi. Re-thinking the effectiveness of batch normalization and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(1): 465-478. doi: 10.1109/TPAMI.2023.3319005
|
[11] |
Oh J, Kim H, Baik S, et al. Batch normalization tells you which filter is important[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 2022: 3351-3360.
|
[12] |
Dubey S R, Singh S K, Chaudhuri B B. Activation functions in deep learning: a comprehensive survey and benchmark[J]. Neurocomputing, 2021, 503: 92-108.
|
[13] |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
|
[14] |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016: 770-778.
|
[15] |
朱小龙, 王翊, 谢志江, 等. 精密光学元件表面洁净度成像检测系统[J]. 西南交通大学学报, 2009, 44(6): 958-962
Zhu Xiaolong, Wang Yi, Xie Zhijiang, et al. Surface cleanliness level detection by imaging method for precision optical elements[J]. Journal of Southwest Jiaotong University, 2009, 44(6): 958-962
|
[16] |
赵春溢, 郭洪涛, 郭涛, 等. 一种风机叶片图像采集及缺陷检测系统[J]. 红外技术, 2020, 42(12): 1203-1210
Zhao Chunyi, Guo Hongtao, Guo Tao, et al. Defect detection system based on UAV images for wind turbine blades[J]. Infrared Technology, 2020, 42(12): 1203-1210
|
[17] |
黄俊, 张娜娜, 章惠. 基于优化LeNet-5的近红外图像中的静默活体人脸检测[J]. 红外技术, 2021, 43(9): 845-851
Huang Jun, Zhang Na’na, Zhang Hui. Silent live face detection in near-infrared images based on optimized LeNet-5[J]. Infrared Technology, 2021, 43(9): 845-851
|
[18] |
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
|
[19] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. 2012: 1097-1105.
|
[20] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[DB/OL]. arXiv preprint arXiv: 1409.1556, 2014.
|