Turn off MathJax
Article Contents
Shi Huifen, Yue Lingna, Gao Boning, et al. Trapezoidal double ridge waveguide slow wave structure for 340 GHz backward wave oscillator[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250069
Citation: Shi Huifen, Yue Lingna, Gao Boning, et al. Trapezoidal double ridge waveguide slow wave structure for 340 GHz backward wave oscillator[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250069

Trapezoidal double ridge waveguide slow wave structure for 340 GHz backward wave oscillator

doi: 10.11884/HPLPB202537.250069
  • Received Date: 2025-04-11
  • Accepted Date: 2025-07-12
  • Rev Recd Date: 2025-06-18
  • Available Online: 2025-07-30
  • A trapezoidal double ridge waveguide slow wave structure has been proposed to further enhance the interaction impedance and output power of backward wave oscillators. Compared to conventional sine double ridge waveguide and flat-roofed sine double ridge waveguide, significant improvements in both the axial interaction impedance at the center of the electron beam channel and the average interaction impedance across the cross-section are observed, while maintaining a similar normalized phase velocity. Simulation results indicate that within the frequency range of 320~360 GHz, the average interaction impedance of the trapezoidal double ridge waveguide is increased by 78.33% to 86.97% compared to the sine double ridge waveguide, and by at least 46.65% compared to the flat-roofed sine double ridge waveguide. Under the same operating conditions and frequency range, the output power of the trapezoidal double ridge waveguide backward wave oscillator in the 340 GHz band is measured to be 5.55~8.03 W, representing an increase of 26.97% to 73.44% compared to the sine double ridge waveguide and an enhancement of 33.65% to 52.47% over the flat-roofed sine double ridge waveguide. At this point, all three types of backward wave oscillators are optimized for tube length, with the trapezoidal double ridge waveguide backward wave oscillator being at least 16.5% shorter than the other two structures.
  • loading
  • [1]
    王文祥. 微波工程技术[M]. 北京: 国防工业出版社, 2009: 1-677

    Wang Wenxiang. Microwave engineering technology[M]. Beijing: National Defense Industry Press, 2009: 1-677
    [2]
    Abrams R H, Levush B, Mondelli A A, et al. Vacuum electronics for the 21st century[J]. IEEE Microwave Magazine, 2001, 2(3): 61-72. doi: 10.1109/6668.951550
    [3]
    Qiu J X, Levush B, Pasour J, et al. Vacuum tube amplifiers[J]. IEEE Microwave Magazine, 2009, 10(7): 38-51. doi: 10.1109/MMM.2009.934517
    [4]
    Chong C K, Menninger W L. Latest advancements in high-power millimeter-wave helix TWTs[J]. IEEE Transactions on Plasma Science, 2010, 38(6): 1227-1238. doi: 10.1109/TPS.2010.2041940
    [5]
    Hu Linlin, Cai Jinchi, Chen Hongbin. Applications and development of terahertz backward wave oscillators[J]. Acta Electronica Sinica, 2016, 44(4): 974-982.
    [6]
    Tucek J C, Basten M A, Gallagher D A, et al. 220 GHz power amplifier development at Northrop Grumman[C]//Proceedings of the IVEC 2012. 2012: 553-554.
    [7]
    Tucek J, Kreischer K, Gallagher D, et al. Development and operation of a 650 GHz folded waveguide source[C]//Proceedings of 2007 IEEE International Vacuum Electronics Conference. 2007: 1-2.
    [8]
    Zhou Quanfeng, Song Rui, Lei Wenqiang, et al. Development of a 0.22THz folded waveguide travelling wave tube[C]//Proceedings of 2015 IEEE International Vacuum Electronics Conference. 2015: 1-2.
    [9]
    Wang Zhanliang, Zhou Qing, Gong Huarong, et al. Development of a 140-GHz folded-waveguide traveling-wave tube in a relatively larger circular electron beam tunnel[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(17): 1914-1923. doi: 10.1080/09205071.2017.1341346
    [10]
    Tian Yanyan, Yue Lingna, Xu Jin, et al. A novel slow-wave structure—Folded rectangular groove waveguide for millimeter-wave TWT[J]. IEEE Transactions on Electron Devices, 2012, 59(2): 510-515. doi: 10.1109/TED.2011.2175929
    [11]
    Field M, Kimura T, Atkinson J, et al. Development of a 100-W 200-GHz high bandwidth mm-wave amplifier[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2122-2128. doi: 10.1109/TED.2018.2790411
    [12]
    Zhang Changqing, Pan Pan, Cai Jun, et al. Demonstration of a PCM-focused sheet beam TWT amplifier at G-band[J]. IEEE Transactions on Electron Devices, 2023, 70(6): 2798-2803. doi: 10.1109/TED.2022.3233291
    [13]
    赖剑强. 交错双栅慢波结构的应用研究[D]. 成都: 电子科技大学, 2012: 69-90

    Lai Jianqiang. Research on applications of staggered double vane slow-wave structure[D]. Chengdu: University of Electronic Science and Technology of China, 2012: 69-90
    [14]
    赖剑强, 魏彦玉, 黄民智, 等. W波段交错双栅返波振荡器高频系统[J]. 强激光与粒子束, 2012, 24(9):2164-2168 doi: 10.3788/HPLPB20122409.2164

    Lai Jianqiang, Wei Yanyu, Huang Minzhi, et al. RF circuit for W-band staggered double vane backward wave oscillator[J]. High Power Laser and Particle Beams, 2012, 24(9): 2164-2168 doi: 10.3788/HPLPB20122409.2164
    [15]
    冯霖琦, 岳玲娜, 徐进, 等. 一种宽带瓦量级交错双栅脊波导返波振荡器的研究[J]. 强激光与粒子束, 2023, 35:123001

    Feng Linqi, Yue Lingna, Xu Jin, et al. Investigation of a wide band watt level backward wave oscillator based on ridged double staggered grating waveguide[J]. High Power Laser and Particle Beams, 2023, 35: 123001
    [16]
    Xu Xiong, Wei Yanyu, Shen Fei, et al. Sine waveguide for 0.22-THz traveling-wave tube[J]. IEEE Electron Device Letters, 2011, 32(8): 1152-1154. doi: 10.1109/LED.2011.2158060
    [17]
    Zhang Luqi, Wei Yanyu, Jiang Xuebing, et al. A truncated sine waveguide for G-band TWT[C]//Proceedings of 2017 Eighteenth International Vacuum Electronics Conference. 2017: 1-2.
    [18]
    Lu Zhigang, Zhu Meiling, Ding Kesen, et al. Investigation of double tunnel sine waveguide slow-wave structure for terahertz dual-beam TWT[J]. IEEE Transactions on Electron Devices, 2020, 67(5): 2176-2181. doi: 10.1109/TED.2020.2981992
    [19]
    Zhang Luqi, Wei Yanyu, Guo Guo, et al. A ridge-loaded sine waveguide for G-band traveling-wave tube[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2832-2837. doi: 10.1109/TPS.2016.2605161
    [20]
    Zhang Luqi, Wei Yanyu, Guo Guo, et al. An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide[J]. Journal of Physics D: Applied Physics, 2016, 49: 235102. doi: 10.1088/0022-3727/49/23/235102
    [21]
    Yue Lingna, Bai Ziqing, Feng Linqi, et al. Investigation of a 300–350 GHz BWO with flat-roofed sine double ridge waveguide and Brewster window[J]. IEEE Transactions on Electron Devices, 2024, 71(11): 7049-7055. doi: 10.1109/TED.2024.3453784
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (58) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return