Citation: | Fu Wei, Wang Chuan, Zhang Tianjue, et al. Method for solving Vlasov equation based on physical informed Fourier neural operator[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250071 |
[1] |
Chen, Francis F. Introduction to plasma physics and controlled fusion [M]. Vol. 1. New York: Plenum Press, 1984.
|
[2] |
Bardos, C, Anne N. A Vlasov equation with Dirac potential used in fusion plasmas [J]. Journal of Mathematical Physics 53, 2012, no. 11.
|
[3] |
Palmroth, M. , Ganse, U. , et al. Vlasov methods in space physics and astrophysics [J]. Living Reviews in Computational Astrophysics, 2018, 4(1), p. 1.
|
[4] |
Bertrand P, Albrecht-Marc M, et al. Vlasov models for laser-plasma interaction [J]. Transport Theory and Statistical Physics. 2005 Jan 1;34(1-2): 103-26.
|
[5] |
Fijalkow, Eric. A numerical solution to the Vlasov equation [J]. Computer Physics Communications, 1999, 116. 2-3: 319-328.
|
[6] |
Birdsall, C. K, et al. Plasma physics via computer simulation [M]. 2018.
|
[7] |
Murawski K, Numerical solutions of magnetohydrodynamic equations [J]. Bulletin of the Polish Academy of Sciences-Technical Sciences, 2011, 59(2): 219-226.
|
[8] |
Sonnendrücker, Eric, et al. The semi-Lagrangian method for the numerical resolution of the Vlasov equation[J]. Journal of Computational Physics, 1999, 149(2): 201-220. doi: 10.1006/jcph.1998.6148
|
[9] |
Roska, Tamás, Leon O. Chua, et al. Simulating nonlinear waves and partial differential equations via CNN. I. Basic techniques[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002(10): 807-815.
|
[10] |
Kovachki, Nikola, Zongyi Li, et al. Neural operator: learning maps between function spaces with applications to PDES[J]. Journal of Machine Learning Research, 2023, 24(89): 1-97.
|
[11] |
Raissi, M. , Paris P. , et al. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations [J]. Journal of Computational Physics, 2019, 378 686-707.
|
[12] |
Zhang, Pan, et al. A Maxwell's equations based deep learning method for time domain electromagnetic simulations[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2021, 6: 35-40. doi: 10.1109/JMMCT.2021.3057793
|
[13] |
Eivazi, Hamidreza, Mojtaba Tahani, et al. Physics-informed neural networks for solving Reynolds-averaged Navier–Stokes equations[J]. Physics of Fluids, 2022(7): 34.
|
[14] |
Raissi, Maziar. Deep hidden physics models: deep learning of nonlinear partial differential equations[J]. Journal of Machine Learning Research, 2018(25): 1-24.
|
[15] |
Qin, Yilan, Jiayu Ma, et al. Data-driven modeling of Landau damping by physics-informed neural networks. Physical Review Research, 2023, no. 3: 033079.
|
[16] |
Juno, James, Ammar Hakim, et al. Discontinuous Galerkin algorithms for fully kinetic plasmas. Journal of Computational Physics 2018, 353: 110-147.
|