Turn off MathJax
Article Contents
Xie Zhaoxin, Ge Haojie, Wang Xuejun. Design of novel ultra-low loss single-mode single-polarization hollow-core anti-resonant fiber at 3 μm wavelength[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250072
Citation: Xie Zhaoxin, Ge Haojie, Wang Xuejun. Design of novel ultra-low loss single-mode single-polarization hollow-core anti-resonant fiber at 3 μm wavelength[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250072

Design of novel ultra-low loss single-mode single-polarization hollow-core anti-resonant fiber at 3 μm wavelength

doi: 10.11884/HPLPB202537.250072
  • Received Date: 2025-04-13
  • Accepted Date: 2025-06-10
  • Rev Recd Date: 2025-06-16
  • Available Online: 2025-06-21
  • To achieve stable transmission of laser with lower loss, single mode, and single polarization in the mid-infrared band, a bend-resistant hollow-core anti-resonant fiber configuration with a double-cladding nested structure is designed in this paper. The finite element method is used to optimize the structural parameters, and the transmission characteristics of broadband low-loss single polarization of the fiber are proved in simulation. The confinement loss of this fiber is less than 0.01 dB/km within the wavelength range of 2.9−3.3 μm, the high-order mode extinction ratio is greater than 1,000, and the confinement loss is as low as 0.0014 dB/km at 3 μm wavelength. The symmetry of the fiber structure is destroyed by using different nested tube thicknesses, and the single-polarization characteristic of the fiber is theoretically investigated. Within the wavelength range of 2.996−3.004 μm, the polarization extinction ratio is greater than 10 000, which has an extremely stable single polarization effect. In addition, theoretical analysis indicates that this fiber also has excellent bending resistance performance. When the bending radius in the y-direction is greater than 5 cm, it can still ensure single-polarization laser transmission, and the bending loss is less than 3.11 dB/km. The designed hollow-core anti-resonant fiber configuration has great potential for application in the mid-infrared fiber laser and other fields.
  • loading
  • [1]
    Herring H, Mahfuz M A, Habib M S. Single-polarization and single-mode hybrid hollow-core anti-resonant fiber design at 2 μm[J]. IEEE Photonics Journal, 2024, 16: 7100806.
    [2]
    Fu Q, Jasion G T, Xu L, et al. Advances in mid-infrared low-loss hollow-core anti-resonant fibers[C]//Proceedings of 2024 24th International Conference on Transparent Optical Networks (ICTON). 2024: 1-5.
    [3]
    杨俊彦, 公发全, 刘锐, 等. 中红外激光在光电对抗领域的应用及进展[J]. 飞控与探测, 2020, 3(6):34-42

    Yang Junyan, Gong Faquan, Liu Rui, et al. Application and progress of mid-infrared laser in optoelectronic countermeasure field[J]. Fight Control & Detection, 2020, 3(6): 34-42
    [4]
    申玉, 宗楠, 温雅, 等. 新颖的中红外6.45 μm激光医疗应用及光源研究进展(特邀)[J]. 光电技术应用, 2022, 37(1):10-18 doi: 10.3969/j.issn.1673-1255.2022.01.003

    Shen Yu, Zong Nan, Wen Ya, et al. Review on novel 6.45 μm laser scalpel, the medical applications and laser sources (invited)[J]. Electro-Optic Technology Application, 2022, 37(1): 10-18 doi: 10.3969/j.issn.1673-1255.2022.01.003
    [5]
    Liu Wei, Zheng Yu, Wang Zhe, et al. Ultrasensitive exhaled breath sensors based on anti-resonant hollow core fiber with in situ grown ZnO-Bi2O3[J]. Advanced Materials Interfaces, 2021, 8: 2001978. doi: 10.1002/admi.202001978
    [6]
    Humbert G, Knight J C, Bouwmans G, et al. Hollow core photonic crystal fibers for beam delivery[J]. Optics Express, 2004, 12(8): 1477-1484. doi: 10.1364/OPEX.12.001477
    [7]
    Urich A, Maier R R J, Yu Fei, et al. Flexible delivery of Er: YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures[J]. Biomedical Optics Express, 2013, 4(2): 193-205. doi: 10.1364/BOE.4.000193
    [8]
    Debord B, Amsanpally A, Chafer M, et al. Ultralow transmission loss in inhibited-coupling guiding hollow fibers[J]. Optica, 2017, 4(2): 209-217. doi: 10.1364/OPTICA.4.000209
    [9]
    Mangan B J, Farr L, Langford A, et al. Low loss (1.7 dB/km) hollow core photonic bandgap fiber[C]//Proceedings of Optical Fiber Communication Conference. 2004: 3.
    [10]
    Roberts P J, Williams D P, Mangan B J, et al. Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround[J]. Optics Express, 2005, 13(20): 8277-8285. doi: 10.1364/OPEX.13.008277
    [11]
    Litchinitser N M, Abeeluck A K, Headley C, et al. Antiresonant reflecting photonic crystal optical waveguides[J]. Optics Letters, 2002, 27(18): 1592-1594. doi: 10.1364/OL.27.001592
    [12]
    Archambault J L, Black R J, Lacroix S, et al. Loss calculations for antiresonant waveguides[J]. Journal of Lightwave Technology, 1993, 11(3): 416-423. doi: 10.1109/50.219574
    [13]
    Wang Zhuo, Tu Jiajing, Liu Zhengyong, et al. Design of weakly coupled two-mode hollow-core antiresonant fiber with low loss[J]. Journal of Lightwave Technology, 2020, 38(4): 864-874. doi: 10.1109/JLT.2019.2949817
    [14]
    Yan Shibo, Lou Shuqin, Zhang Wan, et al. Single-polarization single-mode double-ring hollow-core anti-resonant fiber[J]. Optics Express, 2018, 26(24): 31160-31171. doi: 10.1364/OE.26.031160
    [15]
    罗素. 低损中红外空芯反谐振光纤的设计与仿真[D]. 成都: 电子科技大学, 2021

    Luo Su. Design and simulation on low-loss mid-infrared hollow core antiresonant optical fibers[D]. Chengdu: School of Information and Communication Engineering, 2021
    [16]
    严世博. 新型空芯反谐振光纤的设计及其应用研究[D]. 北京: 北京交通大学, 2021

    Yan Shibo. Designs and applications of novel hollow-core anti-resonant fiber[D]. Beijing: Beijing Jiaotong University, 2021
    [17]
    Zhu Xiushan, Peyghambarian N. High-power ZBLAN glass fiber lasers: review and prospect[J]. Advances in Optoelectronics, 2010, 2010: 501956.
    [18]
    Lousteau J, Boetti N G, Negro D, et al. Photonic glasses for IR and mid-IR spectral range[C]//Proceedings of International Conference on Space Optics—ICSO 2012. 2012: 792-797.
    [19]
    张家强, 张敏, 尹金德, 等. 3 μm波段低损耗抗弯曲反谐振空芯光纤设计[J]. 激光与光电子学进展, 2021, 58:1723001

    Zhang Jiaqiang, Zhang Min, Yin Jinde, et al. Design of low loss hollow-core anti-resonance fiber for 3 μm spectral region[J]. Laser & Optoelectronics Progress, 2021, 58: 1723001
    [20]
    朱宽, 张鑫, 鲁文举, 等. 空芯反谐振光纤2.60~4.35 μm中红外激光传输及损耗表征[J]. 激光与光电子学进展, 2022, 59:0306004

    Zhu Kuan, Zhang Xin, Lu Wenju, et al. Propagation and attenuation characterization of hollow-core anti-resonant fiber at 2.60-4.35 μm[J]. Laser & Optoelectronics Progress, 2022, 59: 0306004
    [21]
    Zhang Hao, Chang Yanjie, Xu Yantao, et al. Design and fabrication of a chalcogenide hollow-core anti-resonant fiber for mid-infrared applications[J]. Optics Express, 2023, 31(5): 7659-7670. doi: 10.1364/OE.482941
    [22]
    Zhu Jun, Feng Shaohua, Liu Changzhen, et al. Design and fabrication of a tellurite hollow-core anti-resonant fiber for mid-infrared applications[J]. Optics Express, 2024, 32(8): 14067-14077. doi: 10.1364/OE.519034
    [23]
    申翰阳, 冉杨凯, 张傲, 等. 中红外低损耗大模场空芯反谐振光纤的研究[J]. 光电子·激光, 2025, 36(4):360-368

    Shen Hanyang, Ran Yangkai, Zhang Ao, et al. Research on mid-infrared low-loss large-mode-area hollow core anti-resonant fiber[J]. Journal of Optoelectronics·Laser, 2025, 36(4): 360-368
    [24]
    Akosman A E, Ordu M. Nested compound negative curvature hollow-core fiber for single-mode operation in the infrared region[J]. Optics Communications, 2021, 497: 127194. doi: 10.1016/j.optcom.2021.127194
    [25]
    Habib M S, Bang O, Bache M. Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements[J]. Optics Express, 2016, 24(8): 8429-8436. doi: 10.1364/OE.24.008429
    [26]
    Gong Yujie, Meng Yichao. Single-polarization single-mode broadband ultra-low loss hollow-core anti-resonant fiber with nested double C-type cladding tubes[J]. Optics Communications, 2024, 552: 130062. doi: 10.1016/j.optcom.2023.130062
    [27]
    Chen Junle, Peng Luoyan, Shi Yongwei, et al. Nested hollow-core anti-resonant fiber with elliptical cladding for 2 µm laser transmission[J]. Optics Express, 2024, 32(16): 28148-28159. doi: 10.1364/OE.528511
    [28]
    Kaushalram A, Suchita, Bhardwaj A. Enhancing single-mode guidance using avoided crossings in anti-resonant hollow-core fibers with five nested cladding tubes[J]. Optics Communications, 2024, 551: 130036. doi: 10.1016/j.optcom.2023.130036
    [29]
    Zhao Xingtao, Li Zhiwei, Cheng Yufeng, et al. Ultra-low-loss anti-resonant hollow-core fiber with nested concentric circle structures[J]. Results in Physics, 2022, 43: 106113. doi: 10.1016/j.rinp.2022.106113
    [30]
    Zhao Xingtao, Xiang Jingliang, Wu Xuanrui, et al. High birefringence, single-polarization, low loss hollow-core anti-resonant fibers[J]. Optics Express, 2021, 29(22): 36273-36286. doi: 10.1364/OE.439550
    [31]
    Wei Shaocong, Zhang Yuheng, Wu Tong, et al. Broadband birefringence hollow-core anti-resonant optical fiber with elliptical air holes[J]. Optics Communications, 2023, 527: 128976. doi: 10.1016/j.optcom.2022.128976
    [32]
    Yan Shibo, Lian Zhenggang, Lou Shuqin, et al. Single-polarization single-mode hollow-core negative-curvature fiber with silicon-coated cladding[J]. Optical and Quantum Electronics, 2020, 52: 269. doi: 10.1007/s11082-020-02383-9
    [33]
    Poletti F. Nested antiresonant nodeless hollow core fiber[J]. Optics Express, 2014, 22(20): 23807-23828. doi: 10.1364/OE.22.023807
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views (34) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return