Citation: | Shen Guomao, Liu Jinming, Pang Xiaoyu, et al. ELEC-TDNN: electromagnetic fingerprint recognition based on neural network[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250076 |
[1] |
秦鑫, 黄洁, 王建涛, 等. 基于无意调相特性的雷达辐射源个体识别[J]. 通信学报, 2020, 41(5): 104-111
Qin Xin, Huang Jie, Wang Jiantao, et al. Radar emitter identification based on unintentional phase modulation on pulse characteristic[J]. Journal on Communications, 2020, 41(5): 104-111
|
[2] |
刘壮, 李陆, 杨轩. 计算机电磁指纹提取和识别技术研究[J]. 计算机时代, 2022(5): 19-24
Liu Zhuang, Li Lu, Yang Xuan. Research on electromagnetic fingerprint extraction and identification technology of computer[J]. Computer Era, 2022(5): 19-24
|
[3] |
Chen Yang, Liu Jinming, Mao Jian. Blind source separation of electromagnetic signals based on deep focusing U-Net[J]. Journal of Intelligent & Fuzzy Systems, 2023, 45(5): 9157-9167.
|
[4] |
Chen Yang, Liu Jinming, Mao Jian, et al. Blind source separation of electromagnetic signals based on Swish-Tasnet[J]. Circuits, Systems, and Signal Processing, 2024, 43(10): 6620-6636. doi: 10.1007/s00034-024-02653-x
|
[5] |
Chen Yang, Liu Jinming, Mao Jian. Blind source separation of electromagnetic signals based on one-dimensional U-Net[C]//Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering. 2023: 1597-1602.
|
[6] |
Liu Taikang, Li Yongmei. Electromagnetic information leakage and countermeasure technique[M]. Singapore: Springer, 2019.
|
[7] |
刘波, 徐艳云, 黄伟庆, 等. 基于电磁指纹特征的USB行为识别方法研究[J]. 信息安全学报
Liu Bo, Xu Yanyun, Huang Weiqing, et al. Study on USB behavior recognition method based on electromagnetic fingerprint features[J]. Journal of Cyber Security
|
[8] |
俞佳宝, 胡爱群, 朱长明, 等. 无线通信设备的射频指纹提取与识别方法[J]. 密码学报, 2016, 3(5): 433-446
Yu Jiabao, Hu Aiqun, Zhu Changming, et al. RF fingerprinting extraction and identification of wireless communication devices[J]. Journal of Cryptologic Research, 2016, 3(5): 433-446
|
[9] |
Ogli F K I. Study of the spectrum of side electromagnetic radiations of video interface DVI[C]//Proceedings of 2021 International Conference on Information Science and Communications Technologies. 2021: 1-3.
|
[10] |
Soltanieh N, Norouzi Y, Yang Yang, et al. A review of radio frequency fingerprinting techniques[J]. IEEE Journal of Radio Frequency Identification, 2020, 4(3): 222-233. doi: 10.1109/JRFID.2020.2968369
|
[11] |
Guo Shanzeng, White R E, Low M. A comparison study of radar emitter identification based on signal transients[C]//Proceedings of 2018 IEEE Radar Conference. 2018: 286-290.
|
[12] |
Yang K, Kang J, Jang J, et al. Multimodal sparse representation-based classification scheme for RF fingerprinting[J]. IEEE Communications Letters, 2019, 23(5): 867-870. doi: 10.1109/LCOMM.2019.2905205
|
[13] |
Rajendran S, Sun Zhi, Lin Feng, et al. Injecting reliable radio frequency fingerprints using metasurface for the internet of things[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 1896-1911. doi: 10.1109/TIFS.2020.3045318
|
[14] |
Xu Jinlong, Wei Dong, Huang Weiqing. Polarization fingerprint: a novel physical-layer authentication in wireless IoT[C]//Proceedings of 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks. 2022: 434-443.
|
[15] |
Senoussaoui M, Kenny P, Dehak N, et al. An i-vector extractor suitable for speaker recognition with both microphone and telephone speech[C]//Proceedings of Odyssey 2010: The Speaker and Language Recognition Workshop. 2010.
|
[16] |
Dehak N, Kenny P J, Dehak R, et al. Front-end factor analysis for speaker verification[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(4): 788-798. doi: 10.1109/TASL.2010.2064307
|
[17] |
Hinton G, Deng Li, Yu Dong, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97. doi: 10.1109/MSP.2012.2205597
|
[18] |
Guo Jiacheng, Sun Huiming, Qin Minghai, et al. A min-max optimization framework for multi-task deep neural network compression[C]//Proceedings of 2024 IEEE International Symposium on Circuits and Systems. 2024: 1-5.
|
[19] |
Snyder D, Garcia-Romero D, Sell G, et al. X-vectors: robust DNN embeddings for speaker recognition[C]//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. 2018: 5329-5333.
|
[20] |
Snyder D, Garcia-Romero D, Sell G, et al. Speaker recognition for multi-speaker conversations using X-vectors[C]//Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. 2019: 5796-5800.
|
[21] |
Desplanques B, Thienpondt J, Demuynck K. ECAPA-TDNN: emphasized channel attention, propagation and aggregation in TDNN based speaker verification[C]//Proceedings of the 21st Annual Conference of the International Speech Communication Association. 2020: 3830-3834.
|
[22] |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
|
[23] |
Wang Rui, Wei Zhihua, Duan Haoran, et al. EfficientTDNN: efficient architecture search for speaker recognition[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2022, 30: 2267-2279. doi: 10.1109/TASLP.2022.3182856
|
[24] |
Heo H J, Shin U H, Lee R, et al. NeXt-TDNN: modernizing multi-scale temporal convolution backbone for speaker verification[C]//Proceedings of 2024 IEEE International Conference on Acoustics, Speech and Signal Processing. 2024: 11186-11190.
|
[25] |
Kingma D P, Ba J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations. 2015.
|
[26] |
Zhang Shiliang, Lei Ming, Yan Zhijie, et al. Deep-FSMN for large vocabulary continuous speech recognition[C]//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. 2018: 5869-5873.
|
[27] |
Bai Shaojie, Kolter J Z, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[DB/OL]. arXiv preprint arXiv: 1803.01271, 2018.
|
[28] |
Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 7132-7141.
|
[29] |
Okabe K, Koshinaka T, Shinoda K. Attentive statistics pooling for deep speaker embedding[C]//Proceedings of the 19th Annual Conference of the International Speech Communication Association. 2018: 2252-2256.
|