Volume 37 Issue 8
Jul.  2025
Turn off MathJax
Article Contents
Cao Pan, Hao Jianhong, Xue Bixi, et al. Impact of geomagnetic activity on the evolution patterns of artificial radiation belt electrons[J]. High Power Laser and Particle Beams, 2025, 37: 086003. doi: 10.11884/HPLPB202537.250083
Citation: Cao Pan, Hao Jianhong, Xue Bixi, et al. Impact of geomagnetic activity on the evolution patterns of artificial radiation belt electrons[J]. High Power Laser and Particle Beams, 2025, 37: 086003. doi: 10.11884/HPLPB202537.250083

Impact of geomagnetic activity on the evolution patterns of artificial radiation belt electrons

doi: 10.11884/HPLPB202537.250083
  • Received Date: 2025-04-17
  • Accepted Date: 2025-06-30
  • Rev Recd Date: 2025-06-30
  • Available Online: 2025-07-24
  • Publish Date: 2025-07-26
  • Artificial radiation belts pose potential threats to spacecraft longevity and performance. High-latitude detonation points can inject large quantities of high-energy particles into Earth's outer radiation belt, which is more susceptible to geomagnetic disturbances compared to the inner radiation belt. Understanding the effects of geomagnetic activity on these particles is of significant importance. This study aims to investigate the diffusion and evolution patterns of electrons in high-L-shell artificial radiation belts under geomagnetic activity, analyzing how geomagnetic disturbances influence electron distribution and decay processes to provide theoretical foundations for spacecraft protection. A three-dimensional artificial radiation belt model was developed based on the VERB3D framework. Numerical simulations were conducted to examine electron diffusion and evolution across three parameters: radial distance, energy, and pitch angle. The analysis focused on geomagnetic effects on plasmasphere morphology, wave field intensity, and wave-particle interactions. Intense geomagnetic activity not only caused significant inward contraction of the plasmasphere but also exponentially enhanced wave field intensities both inside and outside the plasmasphere. This accelerated the diffusion process of artificial radiation belt electrons, leading to rapid flux attenuation and achieving stable distribution states in radial distance, energy, and pitch angle within a relatively short timeframe. However, under sustained geomagnetic influence, the flux of stably distributed high-energy electrons continued to decline. Geomagnetic activity can significantly accelerate the diffusion and decay processes of artificial radiation belts, thereby reducing their hazardous effects on spacecraft. These findings provide new theoretical foundations for spacecraft protection design and hold important reference value for space environment safety assurance.
  • loading
  • [1]
    McIlwain C E. The radiation belts, natural and artificial[J]. Science, 1963, 142(3590): 355-361. doi: 10.1126/science.142.3590.355
    [2]
    Van Allen J A, McIlwain C E, Ludwig G H. Satellite observations of electrons artificially injected into the geomagnetic field[J]. Journal of Geophysical Research, 1959, 64(8): 877-891. doi: 10.1029/JZ064i008p00877
    [3]
    Hess W N. The artificial radiation belt made on July 9, 1962[J]. Journal of Geophysical Research, 1963, 68(3): 667-683. doi: 10.1029/JZ068i003p00667
    [4]
    王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. Parameter handbook of high attitude nuclear detonation effects[M]. Beijing: Atomic Energy Press, 2010
    [5]
    Dupont D G. Nuclear explosions in orbit[J]. Scientific American, 2004, 290(6): 100-107. doi: 10.1038/scientificamerican0604-100
    [6]
    顾旭东, 赵正予, 倪彬彬, 等. 高空核爆炸形成人工辐射带的数值模拟[J]. 物理学报, 2009, 58(8):5871-5878 doi: 10.7498/aps.58.5871

    Gu Xudong, Zhao Zhengyu, Ni Binbin, et al. Numerical simulation of the formation of artificial radiation belt caused by high altitude nuclear detonation[J]. Acta Physics Sinica, 2009, 58(8): 5871-5878 doi: 10.7498/aps.58.5871
    [7]
    Subbotin D A, Shprits Y Y. Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code[J]. Space Weather, 2009, 7: S10001.
    [8]
    Fok M C, Buzulukova N Y, Chen S H, et al. The comprehensive inner magnetosphere-ionosphere model[J]. Journal of Geophysical Research: Space Physics, 2014, 119(9): 7522-7540. doi: 10.1002/2014JA020239
    [9]
    王建国, 刘利, 牛胜利, 等. 高空核爆炸环境数值模拟[J]. 现代应用物理, 2023, 14:010101 doi: 10.12061/j.issn.2095-6223.2023.010101

    Wang Jianguo, Liu Li, Niu Shengli, et al. Numerical simulations of environmental parameters of high-altitude nuclear explosion[J]. Modern Applied Physics, 2023, 14: 010101 doi: 10.12061/j.issn.2095-6223.2023.010101
    [10]
    朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14:030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
    [11]
    牛胜利, 罗旭东, 王建国, 等. 高空核爆炸注入辐射带电子的大气扩散损失[J]. 计算物理, 2011, 28(4):569-575 doi: 10.3969/j.issn.1001-246X.2011.04.015

    Niu Shengli, Luo Xudong, Wang Jianguo, et al. Atmospheric diffusion loss of radiation belt trapped electrons injected by high altitude nuclear detonation[J]. Chinese Journal of Computational Physics, 2011, 28(4): 569-575 doi: 10.3969/j.issn.1001-246X.2011.04.015
    [12]
    Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [13]
    Cunningham G S, Loridan V, Ripoll J F, et al. Neoclassical diffusion of radiation-belt electrons across very low L-shells[J]. Journal of Geophysical Research: Space Physics, 2018, 123(4): 2884-2901. doi: 10.1002/2017JA024931
    [14]
    Drozdov A Y, Shprits Y Y, Orlova K G, et al. Energetic, relativistic, and ultrarelativistic electrons: comparison of long-term VERB code simulations with Van Allen Probes measurements[J]. Journal of Geophysical Research: Space Physics, 2015, 120(5): 3574-3587. doi: 10.1002/2014JA020637
    [15]
    Shprits Y Y, Subbotin D A, Meredith N P, et al. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: local acceleration and loss[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(14): 1694-1713. doi: 10.1016/j.jastp.2008.06.014
    [16]
    Brautigam D H, Albert J M. Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A1): 291-309. doi: 10.1029/1999JA900344
    [17]
    Subbotin D A, Shprits Y Y, Ni Binbin. Long-term radiation belt simulation with the VERB 3-D code: comparison with CRRES observations[J]. Journal of Geophysical Research: Space Physics, 2011, 116: A12210. doi: 10.1029/2011JD015663
    [18]
    Orlova K, Spasojevic M, Shprits Y. Activity-dependent global model of electron loss inside the plasmasphere[J]. Geophysical Research Letters, 2014, 41(11): 3744-3751. doi: 10.1002/2014GL060100
    [19]
    Subbotin D A, Shprits Y Y. Three-dimensional radiation belt simulations in terms of adiabatic invariants using a single numerical grid[J]. Journal of Geophysical Research: Space Physics, 2012, 117: A05205.
    [20]
    O'Brien B J, Laughlin C D, Van Allen J A. Geomagnetically trapped radiation produced by a high-altitude nuclear explosion on July 9, 1962[J]. Nature, 1962, 195(4845): 939-943. doi: 10.1038/195939a0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (107) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return