Turn off MathJax
Article Contents
Hu Hao, Yang Xiaofeng, Wang Duan, et al. A temperature prediction method for optical elements based on Transformer model[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250094
Citation: Hu Hao, Yang Xiaofeng, Wang Duan, et al. A temperature prediction method for optical elements based on Transformer model[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250094

A temperature prediction method for optical elements based on Transformer model

doi: 10.11884/HPLPB202537.250094
  • Received Date: 2025-04-22
  • Accepted Date: 2025-06-10
  • Rev Recd Date: 2025-06-16
  • Available Online: 2025-07-01
  • This paper employs a Transformer model to address the challenge of real-time temperature prediction for optical elements under multi-physical field coupling. Experimental results demonstrate that compared to empirical model methods, the Transformer model achieves reductions of 70% and 32% in root mean square error (RMSE) and mean absolute error (MAE), respectively. When compared to LSTM-based methods, the Transformer model reduces RMSE and MAE by 66% and 23%, respectively. Additionally, the coefficient of determination (R2) of the Transformer model approaches 1 more closely, indicating higher consistency between predicted and actual values.
  • loading
  • [1]
    邓燕, 许乔, 柴立群, 等. 光学元件亚表面缺陷的全内反射显微检测[J]. 强激光与粒子束, 2009, 21(6):835-840

    Deng Yan, Xu Qiao, Chai Liqun, et al. Total internal reflection microscopy: a subsurface defects identification technique in optically transparent components[J]. High Power Laser and Particle Beams, 2009, 21(6): 835-840
    [2]
    任冰强, 黄惠杰, 张维新, 等. 光学元件损伤在线检测装置及实验研究[J]. 强激光与粒子束, 2004, 16(4):465-468

    Ren Bingqiang, Huang Huijie, Zhang Weixin, et al. Online inspection apparatus and experiments on optics damage[J]. High Power Laser and Particle Beams, 2004, 16(4): 465-468
    [3]
    赵元安, 邵建达, 刘晓凤, 等. 光学元件的激光损伤问题[J]. 强激光与粒子束, 2022, 34:011004 doi: 10.11884/HPLPB202234.210331

    Zhao Yuanan, Shao Jianda, Liu Xiaofeng, et al. Tracking and understanding laser damage events in optics[J]. High Power Laser and Particle Beams, 2022, 34: 011004 doi: 10.11884/HPLPB202234.210331
    [4]
    胡争争, 马留洋, 胡豪. 基于红外和可见光视频的光学元件故障诊断方法[J]. 强激光与粒子束, 2023, 35:089002 doi: 10.11884/HPLPB202335.230040

    Hu Zhengzheng, Ma Liuyang, Hu Hao. A fault diagnosis method for optical elements based on infrared and visible light videos[J]. High Power Laser and Particle Beams, 2023, 35: 089002 doi: 10.11884/HPLPB202335.230040
    [5]
    Gers F A, Schmidhuber J, Cummins F. Learning to forget: continual prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451-2471. doi: 10.1162/089976600300015015
    [6]
    Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks[C]//Proceedings of the 30th International Conference on Machine Learning. 2013: III-1310-III-1318.
    [7]
    Cho K, van Merrienboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. 2014: 1724-1734.
    [8]
    孟祥福, 石皓源. 基于Transformer模型的时序数据预测方法综述[J]. 计算机科学与探索, 2025, 19(1):45-64 doi: 10.3778/j.issn.1673-9418.2403070

    Meng Xiangfu, Shi Haoyuan. Survey of Transformer-based model for time series forecasting[J]. Journal of Frontiers of Computer Science & Technology, 2025, 19(1): 45-64 doi: 10.3778/j.issn.1673-9418.2403070
    [9]
    梁宏涛, 刘硕, 杜军威, 等. 深度学习应用于时序预测研究综述[J]. 计算机科学与探索, 2023, 17(6):1285-1300 doi: 10.3778/j.issn.1673-9418.2211108

    Liang Hongtao, Liu Shuo, Du Junwei, et al. Review of deep learning applied to time series prediction[J]. Journal of Frontiers of Computer Science & Technology, 2023, 17(6): 1285-1300 doi: 10.3778/j.issn.1673-9418.2211108
    [10]
    袁烨, 张永, 丁汉. 工业人工智能的关键技术及其在预测性维护中的应用现状[J]. 自动化学报, 2020, 46(10):2013-2030

    Yuan Ye, Zhang Yong, Ding Han. Research on key technology of industrial artificial intelligence and its application in predictive maintenance[J]. Acta Automatica Sinica, 2020, 46(10): 2013-2030
    [11]
    冯泽域, 佘少波, 李春煜, 等. 非均匀温度空间中光束内温度预测方法及优化[J/OL]. 真空与低温, 2025. (2025-06-30). http://kns.cnki.net/kcms/detail/62.1125.O4.20250213.1828.002.html.

    Feng Zeyu, She Shaobo, Li Chunyu, et al. Beam temperature prediction method and optimization in non-uniform temperature space[J/OL]. Vacuum and Cryogenics, 2025. (2025-06-30). http://kns.cnki.net/kcms/detail/62.1125.O4.20250213.1828.002.html.
    [12]
    陈思羽, 徐爱迪, 王贞旭, 等. 基于LSTM算法的玉米籽粒储藏温度预测[J]. 实验技术与管理, 2024, 41(1):57-62

    Chen Siyu, Xu Aidi, Wang Zhenxu, et al. Corn kernel storage temperature prediction based on the LSTM algorithm[J]. Experimental Technology and Management, 2024, 41(1): 57-62
    [13]
    Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 6000-6010.
    [14]
    Wen Qingsong, Zhou Tian, Zhang Chaoli, et al. Transformers in time series: a survey[C]//Proceedings of the 32nd International Joint Conference on Artificial Intelligence. 2023: 759.
    [15]
    周哲韬, 刘路, 宋晓, 等. 基于Transformer模型的滚动轴承剩余使用寿命预测方法[J]. 北京航空航天大学学报, 2023, 49(2):430-443

    Zhou Zhetao, Liu Lu, Song Xiao, et al. Remaining useful life prediction method of rolling bearing based on Transformer model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(2): 430-443
    [16]
    Chorowski J, Bahdanau D, Serdyuk D, et al. Attention-based models for speech recognition[C]//Proceedings of the 29th International Conference on Neural Information Processing Systems. 2015: 577-585.
    [17]
    Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[C]//Proceedings of the 3rd International Conference on Learning Representations. 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article views (10) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return