Turn off MathJax
Article Contents
Chen Liangping, Yin Yong, Jiang Tao, et al. Design of a megawatt-level fast bi-phase modulator based on PIN diodes[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250097
Citation: Chen Liangping, Yin Yong, Jiang Tao, et al. Design of a megawatt-level fast bi-phase modulator based on PIN diodes[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250097

Design of a megawatt-level fast bi-phase modulator based on PIN diodes

doi: 10.11884/HPLPB202537.250097
  • Received Date: 2025-04-15
  • Accepted Date: 2025-06-30
  • Rev Recd Date: 2025-07-17
  • Available Online: 2025-07-23
  • Background
    High power microwave (HPM) pulse technology has developed rapidly due to its applications in particle accelerators, radar, communications, directed energy, plasma physics, and other fields. Pulse compression technology provides an effective method for enhancing the peak power of microwave pulses.
    Purpose
    In order to study a low-cost, miniaturized, stable, and arrayable SLAC Energy Doubler (SLED) based on vacuum electronic oscillators such as magnetrons, a high power fast bi-phase modulator with megawatt-level capacity and nanosecond response time has been designed.
    Methods
    Insert a conventional PIN diode loaded-line type phase-shifting circuit into the waveguide structure, and the equivalent impedance of the phase-shifting circuit changes by switching the “on” and “off” states of the PIN diodes through the waveguide external bias circuit, then the waveguide transmission microwave phase changes. The high-power characteristics of such PIN diode waveguide phase shifters have been verified by high-power experiments.
    Results
    In this paper, a 180° phase shift is realized by cascading 8 phase-shifting circuit cells. The frequency-domain and time-domain parameters of the designed bi-phase modulator are tested. The frequency-domain test results show that the insertion loss of the bi-phase modulator is less than 0.7 dB, and the phase shift is 172° at the center frequency of 2.458 GHz. The error of the phase shift is within ±4° compared with that of the design value in simulation. The time-domain test results show that the inversion time of the bi-phase modulator is about 5 ns.
    Conclusions
    Compared with traditional semiconductor phase shifters, this bi-phase modulator can achieve the same phase-reversal speed while withstanding high power capacities, making it extremely valuable in the HPM field.
  • loading
  • [1]
    Woolley B, Syratchev I, Dexter A. Control and performance improvements of a pulse compressor in use for testing accelerating structures at high power[J]. Physical Review Accelerators and Beams, 2017, 20: 101001. doi: 10.1103/PhysRevAccelBeams.20.101001
    [2]
    熊正锋. 基于大功率速调管产生高功率微波技术研究[D]. 北京: 清华大学, 2016: 1-13

    Xiong Zhengfeng. Research on the technology for generating high power microwaves based on high power klystrons[D]. Beijing: Tsinghua University, 2016: 1-13
    [3]
    Wang J W, Tantawi S G, Xu Chen, et al. Development for a supercompact X-band pulse compression system and its application at SLAC[J]. Physical Review Accelerators and Beams, 2017, 20: 110401. doi: 10.1103/PhysRevAccelBeams.20.110401
    [4]
    Wang Ping, Shi Jiaru, Zha Hao, et al. Development of an S-band spherical pulse compressor[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 901: 84-91.
    [5]
    Jiang Yuliang, Zha Hao, Wang Ping, et al. Demonstration of a cavity-based pulse compression system for pulse shape correction[J]. Physical Review Accelerators and Beams, 2019, 22: 082001. doi: 10.1103/PhysRevAccelBeams.22.082001
    [6]
    Jiang Tao, Yang Meng, Xiong Zhengfeng, et al. An X-band switched energy storage microwave pulse compression system[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4525-4529. doi: 10.1109/TPS.2019.2920739
    [7]
    Artemenko S N, Igumnov V S, Shlapakovsky A S, et al. Compact active s-band microwave compressors for producing rectangular pulses of up to 100 ns[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(2): 597-605. doi: 10.1109/TMTT.2018.2886850
    [8]
    Ioannidis Z C, Savaidis S P, Mitilineos S A, et al. Design of microwave pulse compressors using small form-factor waveguide cavities[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(8): 3255-3262. doi: 10.1109/TMTT.2020.2996218
    [9]
    张治强, 方进勇, 郝文析, 等. X波段脉冲压缩装置的数值模拟及优化设计[J]. 强激光与粒子束, 2006, 18(2): 330-332

    Zhang Zhiqiang, Fang Jinyong, Hao Wenxi, et al. Numerical simulation and optimization design of X-band pulse compression equipment[J]. High Power Laser and Particle Beams, 2006, 18(2): 330-332
    [10]
    Vikharev A L, Ivanov O A, Gorbachev A M, et al. Experiments on active RF pulse compressors using plasma switches[J]. AIP Conference Proceedings, 2006, 807(1): 463-473.
    [11]
    Artemenko S N, Gorev S A, Igumnov V S, et al. Formation of rectangular pulses in an active microwave compressor with an oversized compact storage cavity[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(2): 1255-1264. doi: 10.1109/TMTT.2020.3042509
    [12]
    陶小魁, 何志文, 邢庆子, 等. SES微波脉冲压缩系统瞬态特性的模拟研究[J]. 强激光与粒子束, 2005, 17(4): 559-563

    Tao Xiaokui, He Zhiwen, Xing Qingzi, et al. Simulation research on the instantaneous response of HPM pulse compression by SES method[J]. High Power Laser and Particle Beams, 2005, 17(4): 559-563
    [13]
    Beilin L, Shlapakovski A S, Donskoy M, et al. Fast-framing optical imaging of plasma formation in resonant microwave pulse compressor[J]. IEEE Transactions on Plasma Science, 2014, 42(5): 1346-1352. doi: 10.1109/TPS.2014.2316204
    [14]
    宁辉, 方进勇, 李平, 等. 高功率微波脉冲压缩技术实验研究[J]. 强激光与粒子束, 2001, 13(4): 471-474

    Ning Hui, Fang Jinyong, Li Ping, et al. Experimental research on HPM pulse compression[J]. High Power Laser and Particle Beams, 2001, 13(4): 471-474
    [15]
    Chen Liangping, Yin Yong, Deng Shun, et al. Experimental study on breakdown characteristics of microwave gas discharge tubes[J]. IEEE Transactions on Plasma Science, 2024, 52(10): 4960-4966. doi: 10.1109/TPS.2024.3376970
    [16]
    Jiang Yuliang, Zha Hao, Shi Jiaru, et al. A compact X-band microwave pulse compressor using a corrugated cylindrical cavity[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(3): 1586-1593. doi: 10.1109/TMTT.2021.3053913
    [17]
    Jiang Yuliang, Shi Jiaru, Wang Ping, et al. Compact two-stage pulse compression system for producing gigawatt microwave pulses[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(10): 4533-4540. doi: 10.1109/TMTT.2021.3093554
    [18]
    Wang Ping, Zha Hao, Syratchev I, et al. rf design of a pulse compressor with correction cavity chain for klystron-based compact linear collider[J]. Physical Review Accelerators and Beams, 2017, 20: 112001. doi: 10.1103/PhysRevAccelBeams.20.112001
    [19]
    王平. 新型高功率微波脉冲压缩器的研究[D]. 北京: 清华大学, 2018: 79-94

    Wang Ping. Research on the novel high-power microwave pulse compressors[D]. Beijing: Tsinghua University, 2018: 79-94
    [20]
    王自成, 张志强, 高冬平, 等. 高品质因数谐振腔的储能过程和泄能过程[J]. 强激光与粒子束, 2021, 33: 103007 doi: :10.11884/HPLPB202133.210132

    Wang Zicheng, Zhang Zhiqiang, Gao Dongping, et al. Storing and dumping processes of energy in high quality factor resonant cavity[J]. High Power Laser and Particle Beams, 2021, 33: 103007 doi: :10.11884/HPLPB202133.210132
    [21]
    Xiong Zhengfeng, Cheng Cheng, Yu Jian, et al. Switching speed effect of phase shift keying in SLED for generating high power microwaves[J]. Chinese Physics C, 2016, 40: 017006. doi: 10.1088/1674-1137/40/1/017006
    [22]
    白维达, 江涛, 熊正锋, 等. S波段高精度快速倒相开关设计[J]. 强激光与粒子束, 2020, 32(5): 053002 (Bai Weida, Jiang Tao, Xiong Zhengfeng, et al. Design of S-band bi-phase modulator with high speed and accuracy[J]. High Power Laser and Particle Beams, 2020, 32(5): 053002 doi: 10.11884/HPLPB202032.190394

    Bai Weida, Jiang Tao, Xiong Zhengfeng, et al. Design of S-band bi-phase modulator with high speed and accuracy[J]. High Power Laser and Particle Beams, 2020, 32(5): 053002 doi: 10.11884/HPLPB202032.190394
    [23]
    沈旭明, 张鹏, 和天慧. 能量倍增器法微波脉冲压缩[J]. 强激光与粒子束, 2010, 22(4): 849-852 doi: 10.3788/HPLPB20102204.0849

    Shen Xuming, Zhang Peng, He Tianhui. High power microwave pulse compression of energy doublers[J]. High Power Laser and Particle Beams, 2010, 22(4): 849-852 doi: 10.3788/HPLPB20102204.0849
    [24]
    Song Minsheng, Bi Liangjie, Meng Lin, et al. High-efficiency phase-locking of millimeter-wave magnetron for high-power array applications[J]. IEEE Electron Device Letters, 2021, 42(11): 1658-1661. doi: 10.1109/LED.2021.3112563
    [25]
    Li Wenlong, Li Hailong, Qin Yu, et al. Phase control demonstration of S-band hybrid phase-locking magnetrons for array applications[J]. IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2025.3536474.
    [26]
    Qin Yu, Bi Liangjie, Yin Yong, et al. Simulation and experiment study of modular X-band phase-locking magnetron[J]. IEEE Transactions on Electron Devices, 2024, 71(7): 4342-4346. doi: 10.1109/TED.2024.3405399
    [27]
    Bi Liangjie, Zheng Qiong, Li Hailong, et al. Multiorder-cascaded matching of coupling structures for high-efficiency phase locking between multiple magnetrons[J]. IEEE Transactions on Electron Devices, 2024, 71(6): 3932-3939. doi: 10.1109/TED.2024.3392548
    [28]
    Chen Liangping, Yin Yong, Jiang Tao, et al. A megawatt p-i-n diode waveguide phase shifter[J]. IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2025.3546193.
    [29]
    Li Xin, Wang Bangji, Ding Qiao, et al. High-power mechanical waveguide phase shifter: electromagnetic resonance analysis and protection design[J]. IEEE Transactions on Microwave Theory and Techniques, 2025, 73(2): 760-769. doi: 10.1109/TMTT.2024.3440316
    [30]
    Gurbuz O D, Rebeiz G M. A 1.6–2.3-GHz RF MEMS reconfigurable quadrature coupler and its application to a 360° reflective-type phase shifter[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(2): 414-421. doi: 10.1109/TMTT.2014.2379258
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (94) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return