Citation: | Chen Liangping, Yin Yong, Jiang Tao, et al. Design of a megawatt-level fast bi-phase modulator based on PIN diodes[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250097 |
[1] |
Woolley B, Syratchev I, Dexter A. Control and performance improvements of a pulse compressor in use for testing accelerating structures at high power[J]. Physical Review Accelerators and Beams, 2017, 20: 101001. doi: 10.1103/PhysRevAccelBeams.20.101001
|
[2] |
熊正锋. 基于大功率速调管产生高功率微波技术研究[D]. 北京: 清华大学, 2016: 1-13
Xiong Zhengfeng. Research on the technology for generating high power microwaves based on high power klystrons[D]. Beijing: Tsinghua University, 2016: 1-13
|
[3] |
Wang J W, Tantawi S G, Xu Chen, et al. Development for a supercompact X-band pulse compression system and its application at SLAC[J]. Physical Review Accelerators and Beams, 2017, 20: 110401. doi: 10.1103/PhysRevAccelBeams.20.110401
|
[4] |
Wang Ping, Shi Jiaru, Zha Hao, et al. Development of an S-band spherical pulse compressor[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 901: 84-91.
|
[5] |
Jiang Yuliang, Zha Hao, Wang Ping, et al. Demonstration of a cavity-based pulse compression system for pulse shape correction[J]. Physical Review Accelerators and Beams, 2019, 22: 082001. doi: 10.1103/PhysRevAccelBeams.22.082001
|
[6] |
Jiang Tao, Yang Meng, Xiong Zhengfeng, et al. An X-band switched energy storage microwave pulse compression system[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4525-4529. doi: 10.1109/TPS.2019.2920739
|
[7] |
Artemenko S N, Igumnov V S, Shlapakovsky A S, et al. Compact active s-band microwave compressors for producing rectangular pulses of up to 100 ns[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(2): 597-605. doi: 10.1109/TMTT.2018.2886850
|
[8] |
Ioannidis Z C, Savaidis S P, Mitilineos S A, et al. Design of microwave pulse compressors using small form-factor waveguide cavities[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(8): 3255-3262. doi: 10.1109/TMTT.2020.2996218
|
[9] |
张治强, 方进勇, 郝文析, 等. X波段脉冲压缩装置的数值模拟及优化设计[J]. 强激光与粒子束, 2006, 18(2): 330-332
Zhang Zhiqiang, Fang Jinyong, Hao Wenxi, et al. Numerical simulation and optimization design of X-band pulse compression equipment[J]. High Power Laser and Particle Beams, 2006, 18(2): 330-332
|
[10] |
Vikharev A L, Ivanov O A, Gorbachev A M, et al. Experiments on active RF pulse compressors using plasma switches[J]. AIP Conference Proceedings, 2006, 807(1): 463-473.
|
[11] |
Artemenko S N, Gorev S A, Igumnov V S, et al. Formation of rectangular pulses in an active microwave compressor with an oversized compact storage cavity[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(2): 1255-1264. doi: 10.1109/TMTT.2020.3042509
|
[12] |
陶小魁, 何志文, 邢庆子, 等. SES微波脉冲压缩系统瞬态特性的模拟研究[J]. 强激光与粒子束, 2005, 17(4): 559-563
Tao Xiaokui, He Zhiwen, Xing Qingzi, et al. Simulation research on the instantaneous response of HPM pulse compression by SES method[J]. High Power Laser and Particle Beams, 2005, 17(4): 559-563
|
[13] |
Beilin L, Shlapakovski A S, Donskoy M, et al. Fast-framing optical imaging of plasma formation in resonant microwave pulse compressor[J]. IEEE Transactions on Plasma Science, 2014, 42(5): 1346-1352. doi: 10.1109/TPS.2014.2316204
|
[14] |
宁辉, 方进勇, 李平, 等. 高功率微波脉冲压缩技术实验研究[J]. 强激光与粒子束, 2001, 13(4): 471-474
Ning Hui, Fang Jinyong, Li Ping, et al. Experimental research on HPM pulse compression[J]. High Power Laser and Particle Beams, 2001, 13(4): 471-474
|
[15] |
Chen Liangping, Yin Yong, Deng Shun, et al. Experimental study on breakdown characteristics of microwave gas discharge tubes[J]. IEEE Transactions on Plasma Science, 2024, 52(10): 4960-4966. doi: 10.1109/TPS.2024.3376970
|
[16] |
Jiang Yuliang, Zha Hao, Shi Jiaru, et al. A compact X-band microwave pulse compressor using a corrugated cylindrical cavity[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(3): 1586-1593. doi: 10.1109/TMTT.2021.3053913
|
[17] |
Jiang Yuliang, Shi Jiaru, Wang Ping, et al. Compact two-stage pulse compression system for producing gigawatt microwave pulses[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(10): 4533-4540. doi: 10.1109/TMTT.2021.3093554
|
[18] |
Wang Ping, Zha Hao, Syratchev I, et al. rf design of a pulse compressor with correction cavity chain for klystron-based compact linear collider[J]. Physical Review Accelerators and Beams, 2017, 20: 112001. doi: 10.1103/PhysRevAccelBeams.20.112001
|
[19] |
王平. 新型高功率微波脉冲压缩器的研究[D]. 北京: 清华大学, 2018: 79-94
Wang Ping. Research on the novel high-power microwave pulse compressors[D]. Beijing: Tsinghua University, 2018: 79-94
|
[20] |
王自成, 张志强, 高冬平, 等. 高品质因数谐振腔的储能过程和泄能过程[J]. 强激光与粒子束, 2021, 33: 103007 doi: :10.11884/HPLPB202133.210132
Wang Zicheng, Zhang Zhiqiang, Gao Dongping, et al. Storing and dumping processes of energy in high quality factor resonant cavity[J]. High Power Laser and Particle Beams, 2021, 33: 103007 doi: :10.11884/HPLPB202133.210132
|
[21] |
Xiong Zhengfeng, Cheng Cheng, Yu Jian, et al. Switching speed effect of phase shift keying in SLED for generating high power microwaves[J]. Chinese Physics C, 2016, 40: 017006. doi: 10.1088/1674-1137/40/1/017006
|
[22] |
白维达, 江涛, 熊正锋, 等. S波段高精度快速倒相开关设计[J]. 强激光与粒子束, 2020, 32(5): 053002 (Bai Weida, Jiang Tao, Xiong Zhengfeng, et al. Design of S-band bi-phase modulator with high speed and accuracy[J]. High Power Laser and Particle Beams, 2020, 32(5): 053002 doi: 10.11884/HPLPB202032.190394
Bai Weida, Jiang Tao, Xiong Zhengfeng, et al. Design of S-band bi-phase modulator with high speed and accuracy[J]. High Power Laser and Particle Beams, 2020, 32(5): 053002 doi: 10.11884/HPLPB202032.190394
|
[23] |
沈旭明, 张鹏, 和天慧. 能量倍增器法微波脉冲压缩[J]. 强激光与粒子束, 2010, 22(4): 849-852 doi: 10.3788/HPLPB20102204.0849
Shen Xuming, Zhang Peng, He Tianhui. High power microwave pulse compression of energy doublers[J]. High Power Laser and Particle Beams, 2010, 22(4): 849-852 doi: 10.3788/HPLPB20102204.0849
|
[24] |
Song Minsheng, Bi Liangjie, Meng Lin, et al. High-efficiency phase-locking of millimeter-wave magnetron for high-power array applications[J]. IEEE Electron Device Letters, 2021, 42(11): 1658-1661. doi: 10.1109/LED.2021.3112563
|
[25] |
Li Wenlong, Li Hailong, Qin Yu, et al. Phase control demonstration of S-band hybrid phase-locking magnetrons for array applications[J]. IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2025.3536474.
|
[26] |
Qin Yu, Bi Liangjie, Yin Yong, et al. Simulation and experiment study of modular X-band phase-locking magnetron[J]. IEEE Transactions on Electron Devices, 2024, 71(7): 4342-4346. doi: 10.1109/TED.2024.3405399
|
[27] |
Bi Liangjie, Zheng Qiong, Li Hailong, et al. Multiorder-cascaded matching of coupling structures for high-efficiency phase locking between multiple magnetrons[J]. IEEE Transactions on Electron Devices, 2024, 71(6): 3932-3939. doi: 10.1109/TED.2024.3392548
|
[28] |
Chen Liangping, Yin Yong, Jiang Tao, et al. A megawatt p-i-n diode waveguide phase shifter[J]. IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2025.3546193.
|
[29] |
Li Xin, Wang Bangji, Ding Qiao, et al. High-power mechanical waveguide phase shifter: electromagnetic resonance analysis and protection design[J]. IEEE Transactions on Microwave Theory and Techniques, 2025, 73(2): 760-769. doi: 10.1109/TMTT.2024.3440316
|
[30] |
Gurbuz O D, Rebeiz G M. A 1.6–2.3-GHz RF MEMS reconfigurable quadrature coupler and its application to a 360° reflective-type phase shifter[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(2): 414-421. doi: 10.1109/TMTT.2014.2379258
|