Turn off MathJax
Article Contents
Zhang Yijie, Hao Jianhong, Song Peiyang, et al. Modeling and calculation of radiation effects of high-energy rays on PCB inside a shielded enclosure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250098
Citation: Zhang Yijie, Hao Jianhong, Song Peiyang, et al. Modeling and calculation of radiation effects of high-energy rays on PCB inside a shielded enclosure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250098

Modeling and calculation of radiation effects of high-energy rays on PCB inside a shielded enclosure

doi: 10.11884/HPLPB202537.250098
  • Received Date: 2025-04-25
  • Accepted Date: 2025-08-19
  • Rev Recd Date: 2025-08-21
  • Available Online: 2025-09-03
  • Background
    X/γ-ray irradiation of an electronic system shielding box will penetrate the box body in the various layers of the system surface or internal photoelectron or Compton electrons, and excitation of electromagnetic pulse, these particles or electromagnetic fields will interfere with or even damage the sensitive electronic components of the electronic system inside the box, affecting the regular operation of the electronic system.
    Purpose
    Rapidly assess the particle and electromagnetic environment inside electronic systems under radiation exposure and enable timely protective measures that mitigate radiation-induced damage and ensure reliable operation.
    Methods
    We present a theoretical analysis of irradiation responses arising from two coupling mechanisms: electromagnetic pulses excited by primary particles within the cavity of a shielded enclosure and their field-to-circuit coupling to a printed circuit board (PCB), and direct multi-layer penetration coupling of ionizing radiation. Equivalent-circuit models were constructed to represent these coupling paths, and transient current responses were calculated analytically.
    Results
    The transient current responses of the shielded enclosure under high-energy radiation, computed using the equivalent-circuit approach, reproduce the trends observed in published experimental measurements and exhibit approximate numerical agreement.
    Conclusions
    The results validate the proposed theoretical modeling approach, showing that analytical equivalent-circuit analysis can provide rapid, simulation-free estimates of radiation effects on electronic systems. The method can be extended to scenarios that more closely match practical applications .
  • loading
  • [1]
    王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010: 170-198

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010: 170-198
    [2]
    王泰春, 贺云汉, 王玉芝. 电磁脉冲导论[M]. 北京: 国防工业出版社, 2011: 130-131

    Wang Taichun, He Yunhan, Wang Yuzhi. Introduction to electromagnetic pulse[M]. Beijing: National Defense Industry Press, 2011: 130-131
    [3]
    Genuario R D. Electron beam transport experimts with short duration pulses[J]. IEEE Transactions on Nuclear Science, 1975, 22(5): 2098-2102. doi: 10.1109/TNS.1975.4328071
    [4]
    葛德彪, 阎玉波. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2002: 56-58

    Ge Debiao, Yan Yubo. FDTD methods in electromagnetics[M]. Xi’an: Xidian University Press, 2002: 56-58
    [5]
    Higgins D, Lee K, Marin L. System-generated EMP[J]. IEEE Transactions on Antennas and Propagation, 1978, 26(1): 14-22. doi: 10.1109/TAP.1978.1141797
    [6]
    张含天, 陈剑楠, 周前红, 等. 系统电磁脉冲建模与数值模拟研究进展[J]. 电波科学学报, 2024, 39(5): 797-807 doi: 10.12265/j.cjors.2024034

    Zhang Hantian, Chen Jiannan, Zhou Qianhong, et al. Progress in modeling and numerical simulation of system generated electromagnetic pulse[J]. Chinese Journal of Radio Science, 2024, 39(5): 797-807 doi: 10.12265/j.cjors.2024034
    [7]
    Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [8]
    Carron N J, Longmire C L. Scaling behavior of the time-dependent SGEMP boundary layer[J]. IEEE Transactions on Nuclear Science, 1978, 25(6): 1329-1335. doi: 10.1109/TNS.1978.4329533
    [9]
    周辉, 陈雨生, 华呜. 系统电磁脉冲的数值模拟技术[J]. 计算物理, 1992, 9(4): 663

    Zhou Hui, Chen Yusheng, Hua Wu. Numerical simulation techniques for system electromagnetic pulse[J]. Chinese Journal of Computational Physics, 1992, 9(4): 663
    [10]
    周辉, 李宝忠, 王立君, 等. 不同注量X射线系统电磁脉冲响应的数值计算[J]. 计算物理, 1999, 16(2): 157-161

    Zhou Hui, Li Baozhong, Wang Lijun, et al. The calculation of SGEMP response in various ranges of X-ray fluence[J]. Chinese Journal of Computational Physics, 1999, 16(2): 157-161
    [11]
    程引会, 周辉, 李宝忠, 等. 光电子发射引起的柱腔内系统电磁脉冲的模拟[J]. 强激光与粒子束, 2004, 16(8): 1029-1032

    Cheng Yinhui, Zhou Hui, Li Baozhong, et al. Simulation of system-generated electromagnetic pulse caused by emitted photoelectron in cavity[J]. High Power Laser and Particle Beams, 2004, 16(8): 1029-1032
    [12]
    张含天, 周前红, 周海京, 等. 二次电子发射对系统电磁脉冲的影响[J]. 物理学报, 2021, 70: 165201 doi: 10.7498/aps.70.20210461

    Zhang Hantian, Zhou Qianhong, Zhou Haijing, et al. Effect of secondary electrons on SGEMP response[J]. Acta Physica Sinica, 2021, 70: 165201 doi: 10.7498/aps.70.20210461
    [13]
    孙会芳, 董志伟, 周海京. 圆柱腔内系统电磁脉冲的数值模拟[J]. 强激光与粒子束, 2021, 33: 123018 doi: 10.11884/HPLPB202133.210354

    Sun Huifang, Dong Zhiwei, Zhou Haijing. Simulation study of internal system generated electromagnetic pulse of cylinder cavity[J]. High Power Laser and Particle Beams, 2021, 33: 123018 doi: 10.11884/HPLPB202133.210354
    [14]
    Ribière M, d’Almeida T, Cessenat O, et al. Investigating the electron density of multi-MeV X-ray-induced air plasmas at low pressures based on electromagnetic resonant cavity analysis[J]. Physics of Plasmas, 2016, 23: 122106. doi: 10.1063/1.4969083
    [15]
    陈剑楠, 张俊杰. 环形缝隙与支柱结构对重入腔系统电磁脉冲场耦合影响的计算[J]. 现代应用物理, 2021, 12: 040501

    Chen Jiannan, Zhang Junjie. Simulation of impact of annular seam and pillar on system-generated electromagnetic pulse field-coupling in reentrant cavity[J]. Modern Applied Physics, 2021, 12: 040501
    [16]
    Chen Jiannan, Wang Jianguo, Tao Yinglong, et al. Simulation of SGEMP using particle-in-cell method based on conformal technique[J]. IEEE Transactions on Nuclear Science, 2019, 66(5): 820-826. doi: 10.1109/TNS.2019.2911933
    [17]
    Higgins D F. Time-domain calculation of the leakage of SGEMP transients through braided cable shields[J]. IEEE Transactions on Nuclear Science, 1989, 36(6): 2042-2049. doi: 10.1109/23.45403
    [18]
    周辉, 郭红霞, 李宝忠, 等. 金属壳体和电缆的系统电磁脉冲响应[J]. 强激光与粒子束, 2004, 16(5): 645-648

    Zhou Hui, Guo Hongxia, Li Baozhong, et al. Response of metal shell and cables to system generate electromagnetic pulse effects[J]. High Power Laser and Particle Beams, 2004, 16(5): 645-648
    [19]
    李进玺, 程引会, 李宝忠, 等. 线缆X射线瞬态响应的电路模型计算[J]. 原子能科学技术, 2012, 46(1): 1-5 doi: 10.7538/yzk.2012.46.01.0001

    Li Jinxi, Cheng Yinhui, Li Baozhong, et al. Circuit Model of wires and cables X-ray transient responses[J]. Atomic Energy Science and Technology, 2012, 46(1): 1-5 doi: 10.7538/yzk.2012.46.01.0001
    [20]
    Seidler W, Keyser R, Walters D, et al. The limits to hardening electronic boxes to IEMP coupling[J]. IEEE Transactions on Nuclear Science, 1982, 29(6): 1780-1786. doi: 10.1109/TNS.1982.4336447
    [21]
    李进玺, 程引会, 吴伟, 等. 印制电路板X射线瞬态响应计算[J]. 核电子学与探测技术, 2014, 34(10): 1267-1270 doi: 10.3969/j.issn.0258-0934.2014.10.026

    Li Jinxi, Cheng Yinhui, Wu Wei, et al. Calculation of transient responses for printed circuit board to X-ray[J]. Nuclear Electronics & Detection Technology, 2014, 34(10): 1267-1270 doi: 10.3969/j.issn.0258-0934.2014.10.026
    [22]
    Fitzwilson R L, Bernstein M J, Alston T E. Radiation induced currents in shielded multi-conductor and semirigid cables[J]. IEEE Transactions on Nuclear Science, 1974, 21(6): 276-283. doi: 10.1109/TNS.1974.6498941
    [23]
    Zhang Hantian, Zhou Qianhong, Zhou Haijing, et al. Numerical simulation of SGEMP generated by X-rays from high-altitude nuclear detonations[J]. IEEE Transactions on Nuclear Science, 2023, 70(4): 678-685. doi: 10.1109/TNS.2023.3249288
    [24]
    Jung S T, Pyo S H, Kang W G, et al. Energy deposition calculation by Monte Carlo simulation in irradiation of electric cables by electron beam[J]. Radiation Physics and Chemistry, 2021, 186: 109506. doi: 10.1016/j.radphyschem.2021.109506
    [25]
    Woods A J. Photon source SGEMP spectrum evaluations[M]. Berlin: Springer, 1978: 16-17.
    [26]
    Dellin T A, MacCallum C J. Handbook of photo-compton current data[M]. Norwalk: Perkin-Elmer Corporation, 1972: 21-52.
    [27]
    Martin J E. Physics for radiation protection[M]. Weinheim: Wiley-VCH, 2013: 262-263.
    [28]
    Pavlenko V I, Edamenko O D, Cherkashina N I, et al. Total energy losses of relativistic electrons passing through a polymer composite[J]. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2014, 8(2): 398-403. doi: 10.1134/S1027451014020402
    [29]
    张玲玉, 李瑞, 李刚, 等. 基于组合几何与自定义网格的粒子输运模拟方法[J]. 现代应用物理, 2022, 13: 010203 doi: 10.12061/j.issn.2095-6223.2022.010203

    Zhang Lingyu, Li Rui, Li Gang, et al. Particle transport simulation method based on constructive solid geometry and custom mesh[J]. Modern Applied Physics, 2022, 13: 010203 doi: 10.12061/j.issn.2095-6223.2022.010203
    [30]
    朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (37) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return