Volume 37 Issue 8
Jul.  2025
Turn off MathJax
Article Contents
Lu Qingheng, Chen Lin, Li Feng, et al. Surface flashover characteristics of solid insulating materials in deionized water under nanosecond pulses[J]. High Power Laser and Particle Beams, 2025, 37: 085003. doi: 10.11884/HPLPB202537.250102
Citation: Lu Qingheng, Chen Lin, Li Feng, et al. Surface flashover characteristics of solid insulating materials in deionized water under nanosecond pulses[J]. High Power Laser and Particle Beams, 2025, 37: 085003. doi: 10.11884/HPLPB202537.250102

Surface flashover characteristics of solid insulating materials in deionized water under nanosecond pulses

doi: 10.11884/HPLPB202537.250102
  • Received Date: 2025-04-28
  • Accepted Date: 2025-06-10
  • Rev Recd Date: 2025-06-10
  • Available Online: 2025-07-30
  • Publish Date: 2025-07-26
  • Deionized water, commonly used as insulating dielectric in pulse-forming lines or transmission lines of high-power pulse devices, offers advantages such as a high dielectric constant, high breakdown strength, good self-healing properties, and low cost. However, the solid insulation barriers in deionized water, which support the inner cylinder and provide physical isolation between different dielectrics at the front and rear ends, are often the weak points in high-voltage insulation systems. To investigate the surface flashover characteristics of typical solid insulation materials in deionized water, this study utilized a high-voltage insulation experimental platform with a maximum operating voltage of approximately 900 kV and a pulse rise time of about 100 ns. The study focused on four common solid insulation materials: MC Nylon, polymethyl methacrylate (PMMA), cross-linked polystyrene (CLPS), and high-density polyethylene (HDPE). Using circular plate electrodes and cylindrical samples, the experiments examined the effects of sample material, thickness, voltage duration and surface roughness on flashover voltage and electric field strength. Results show that as the sample thickness increases from 0.5 cm to 2 cm, the flashover voltage increases linearly, while the flashover field strength decreases exponentially. For different materials, the flashover voltage and field strength follow the order: MC Nylon ≥ PMMA > CLPS > HDPE. As the voltage application time shortens, the flashover voltage gradually increases. When the voltage application time is within 100 ns, the flashover voltage remains basically stable. Furthermore, when the surface roughness of the solid material increases from 1.6 μm to 12.5 μm, no significant change in flashover field strength is observed. Based on a comprehensive analysis of flashover field strength data and impact resistance characteristics, MC Nylon demonstrates the best overall.
  • loading
  • [1]
    曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003

    Zeng Zhengzhong. Introduction to practical pulsed power technology[M]. Xi’an: Shaanxi Science and Technology Press, 2003
    [2]
    Lehr J, Ron P. Foundations of pulsed power technology[M]. Piscataway: Wiley-IEEE Press, 2017.
    [3]
    Stoltzfus B, LeChien K, Savage M, et al. High voltage insulator improvements made in the oil and water sections of the Z machine at Sandia national laboratories in 2008[C]//2009 IEEE Pulsed Power Conference. 2009: 425-430.
    [4]
    Багив В В, Упаков Б Я. Исследование электрической прочности диэлектриков применительно к изоляции высоковольтных преобразовательных устройств[J]. Электричество, 1972, 4: СTP.76-79.
    [5]
    Sharma A, Acharya S, Nagesh K V, et al. Surface flashover in spacer at vacuum/oil interface[C]//20th International Symposium on Discharges and Electrical Insulation in Vacuum. 2002: 219-222.
    [6]
    王珏, 邵涛, 严萍, 等. 纳秒级高压脉冲下变压器油中沿面闪络特性的实验研究[J]. 高压电器, 2005, 41(1):1-3 doi: 10.3969/j.issn.1001-1609.2005.01.001

    Wang Jue, Shao Tao, Yan Ping, et al. Experimental study on dielectric surface flashover under nanosecond pulse in transformer oil[J]. High Voltage Apparatus, 2005, 41(1): 1-3 doi: 10.3969/j.issn.1001-1609.2005.01.001
    [7]
    李光杰. 纳秒脉冲下变压器油中绝缘介质沿面闪络特性的实验研究[D]. 北京: 中国科学院研究生院(电工研究所), 2006

    Li Guangjie. Experimental study on dielectric surface flashover under nanosecond pulse in transformer oil[D]. Beijing: Institute of Electrical Engineering of the Chinese Academy of Sciences, 2006
    [8]
    卢为, 成永红, 王增彬, 等. 环氧及其复合材料在变压器油中的快脉冲闪络特性[J]. 西安交通大学学报, 2010, 44(10):83-87 doi: 10.7652/xjtuxb201010016

    Lu Wei, Cheng Yonghong, Wang Zengbin, et al. Flashover property of epoxy resin and epoxy composites under fast pulse in transformer oil[J]. Journal of Xi’an Jiaotong University, 2010, 44(10): 83-87 doi: 10.7652/xjtuxb201010016
    [9]
    Sinars D B, Sweeney M A, Alexander C S, et al. Review of pulsed power-driven high energy density physics research on Z at Sandia[J]. Physics of Plasmas, 2020, 27: 070501. doi: 10.1063/5.0007476
    [10]
    黄涛, 丛培天, 张国伟, 等. "强光一号"加速器电路模拟与分析[C]//首届全国脉冲功率会议论文集. 2009: 897-900

    Huang Tao, Cong Peitian, Zhang Guowei, et al. Simulation and analysis of "Qiangguang-I" accelerator circuit[C]//The First National Pulsed Power Conference. 2009: 897-900
    [11]
    Smith J, Carlson R, Fulton R, et al. Performance of the Cygnus X-ray source[C]//IEEE Conference Record - Abstracts. 2002 IEEE International Conference on Plasma Science (Cat. No. 02CH37340). 2002: 326.
    [12]
    邱孟通, 呼义翔, 吴伟, 等. 西北核技术研究所强脉冲辐射模拟装置近年发展综述[J]. 现代应用物理, 2024, 15:030101 doi: 10.12061/j.issn.2905-6223.2024.030101

    Qiu Mengtong, Hu Yixiang, Wu Wei, et al. Review of the development of intense pulsed radiation simulator and its technology in northwest institute of nuclear technology in the past decade[J]. Modern Applied Physics, 2024, 15: 030101 doi: 10.12061/j.issn.2905-6223.2024.030101
    [13]
    周建生. 短链疏水基团改性尼龙6的吸水性研究[D]. 泉州: 华侨大学, 2018

    Zhou Jiansheng. Water absorption of short chain hydrophobically modified Nylon 6[D]. Quanzhou: Huaqiao University, 2018
    [14]
    周彤. 尼龙6改性及其共混纤维制备、结构及性能研究[D]. 上海: 东华大学, 2018

    Zhou Tong. Nylon 6 modification and study on preparation, structure and properties of blended fibers[D]. Shanghai: Donghua University, 2018
    [15]
    张哲, 张靖含, 王晓霞, 等. PMMA低温表面液滴凝结过程的实验研究[J]. 低温与超导, 2024, 52(1):36-42,86

    Zhang Zhe, Zhang Jinghan, Wang Xiaoxia, et al. Experimental study on condensation process of PMMA surface droplet at low temperature[J]. Cryogenics and Superconductivity, 2024, 52(1): 36-42,86
    [16]
    罗祥, 赵剑豪. 有机玻璃表面的静电自组装超亲水防雾改性[J]. 功能材料, 2010, 41(12):2057-2059,2063

    Luo Xiang, Zhao Jianhao. Superhydrophilicity antifogging modification of poly(methyl methacrylate) via static electronic self-assembly on the surface[J]. Journal of Functional Materials, 2010, 41(12): 2057-2059,2063
    [17]
    万方超, 许飞凡, 魏伟, 等. 交联聚苯乙烯表面CF4等离子体改性及其真空沿面闪络性能[J]. 高电压技术, 2018, 44(12):3857-3864

    Wan Fangchao, Xu Feifan, Wei Wei, et al. Surface modification of cross-linked polystyrene by CF4 plasma and its vacuum surface flashover performance[J]. High Voltage Engineering, 2018, 44(12): 3857-3864
    [18]
    刘谦, 李新梅, 杨现臣, 等. 超疏水PS/PAN复合纳米纤维的制备及性能研究[J]. 化工新型材料, 2021, 49(10):124-127,132

    Liu Qian, Li Xinmei, Yang Xianchen, et al. Preparation and property of superhydrophobic PS/PAN composite nanofiber[J]. New Chemical Materials, 2021, 49(10): 124-127,132
    [19]
    马正禄. 高密度聚乙烯/凹凸棒土复合材料的制备与性能研究[D]. 自贡: 四川轻化工大学, 2022

    Ma Zhenglu. Preparation and performance of high-density polyethylene/attapulgite nanocomposites[D]. Zigong: Sichuan University of Science & Engineering, 2022
    [20]
    余旺旺. 高密度聚乙烯基本塑复合材料防腐性能的研究[D]. 南京: 南京林业大学, 2011

    Yu Wangwang. Study on anti-corrosion properties of high density polyethylene based wood-plastic composites[D]. Nanjing: Nanjing Forestry University, 2011
    [21]
    李元, 孙滢, 刘毅, 等. 液电效应及电火花震源的研究现状与展望[J]. 高电压技术, 2021, 47(3):753-765

    Li Yuan, Sun Ying, Liu Yi, et al. Electrohydraulic effect and sparker source: current situation and prospects[J]. High Voltage Engineering, 2021, 47(3): 753-765
    [22]
    孙向东. MC尼龙的合成、改性研究[D]. 沈阳: 东北大学, 2006

    Sun Xiangdong. Synthesis and modification of monomer casting Nylon[D]. Shenyang: Northeastern University, 2006
    [23]
    王慧杰, 张宜鹏, 廖辉荣, 等. 化学交联高密度聚乙烯的结构与性能[J]. 塑料, 2024, 53(5):28-32,37

    Wang Huijie, Zhang Yipeng, Liao Huirong, et al. Structure and properties of chemically crosslinked high-density polyethylene[J]. Plastics, 2024, 53(5): 28-32,37
    [24]
    吴飞. 交联聚苯乙烯及其玻纤增强复合材料的制备及性能研究[D]. 武汉: 武汉理工大学, 2010

    Wu Fei. Preparation and properties study on cross-linked polystyrene and its glass fiber reinforced composites[D]. Wuhan: Wuhan University of Technology, 2010
    [25]
    伍雪强. 有机玻璃的增韧改性研究[D]. 苏州: 苏州大学, 2009

    Wu Xueqiang. Research on toughening modification of PMMA[D]. Suzhou: Soochow University, 2009
    [26]
    Martin J C. Nanosecond pulse techniques[J]. Proceedings of the IEEE, 1992, 80(6): 934-945. doi: 10.1109/5.149456
    [27]
    胡多, 任成燕, 孔飞, 等. 表面粗糙度对聚合物材料真空沿面闪络特性的影响[J]. 电工技术学报, 2019, 34(16):3512-3521

    Hu Duo, Ren Chengyan, Kong Fei, et al. Influence of the roughness on surface flashover of polymer materials in vacuum[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3512-3521
    [28]
    Jones H M, Kunhardt E E. Development of pulsed dielectric breakdown in liquids[J]. Journal of Physics D: Applied Physics, 1995, 28(1): 178-188. doi: 10.1088/0022-3727/28/1/025
    [29]
    Pillai A S, Hackam R. Surface flashover of solid dielectric in vacuum[J]. Journal of Applied Physics, 1982, 53(4): 2983-2987. doi: 10.1063/1.331037
    [30]
    丛培天. 串级多间隙气体开关性能研究及优化[D]. 西北核技术研究所, 2012

    Cong Peitian. Research and optimization of the performance of cascaded multi-gap gas switches[D]. Northwest Institute of Nuclear Technology, 2012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article views (102) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return