Turn off MathJax
Article Contents
Li Jun, Zhou Qiang, Wang Tao, et al. Research on pulsed laser damaged of TGG crystals[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250103
Citation: Li Jun, Zhou Qiang, Wang Tao, et al. Research on pulsed laser damaged of TGG crystals[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250103

Research on pulsed laser damaged of TGG crystals

doi: 10.11884/HPLPB202537.250103
  • Received Date: 2025-04-28
  • Accepted Date: 2025-05-30
  • Rev Recd Date: 2025-06-12
  • Available Online: 2025-07-07
  • This article mainly investigated on the incident and exit surfaces of terbium gallium garnet (TGG) magneto-optical elementsby damaged by the laser with wavelength of 1064 nm through pump-probe imaging technology. The damage characteristics of terbium gallium garnet elements under fundamental 1064 nm pulse laser irradiation are studied. The results indicated that the coated TGG element exhibits a lower damage threshold at the incident surface compared with the exit surface, and the difference in damage morphology between the entrance and exit surface was mainly influenced by laser-induced plasma effects. It was found that the initial damage on the TGG incident surface gmainly came from impurities and defects in the coatings, and the separation of the film layer under high energy would be happened; The exit surface damage of coated TGG components was mainly induced by impurity defects in the substrate material, and the size of damage pits was increased gradually under higher laser energy. By analyzing the influence of factors such as laser pulse energy, plasma effect, and material damage response on the laser damage threshold, it provided important and significant reference for improving the anti-damage ability of TGG magneto-optical materials under high-power laser irradiation.
  • loading
  • [1]
    蔡伟, 伍樊成, 杨志勇, 等. 磁光调制技术与应用研究[J]. 激光与光电子学进展, 2015, 52:060003

    Cai Wei, Wu Fancheng, Yang Zhiyong, et al. Research on magneto-optic modulation technology and application[J]. Laser & Optoelectronics Progress, 2015, 52: 060003
    [2]
    陈杰, 周圣明. 面向高功率激光隔离器的磁光材料 (特邀)[J]. 红外与激光工程, 2020, 49:20201072 doi: 10.3788/IRLA20201072

    Chen Jie, Zhou Shengming. Review of magneto-optic materials for high power laser isolators (Invited)[J]. Infrared and Laser Engineering, 2020, 49: 20201072 doi: 10.3788/IRLA20201072
    [3]
    张昊天, 窦仁勤, 张庆礼, 等. 磁光晶体的研究进展及应用[J]. 人工晶体学报, 2020, 49(2):346-352,357 doi: 10.3969/j.issn.1000-985X.2020.02.027

    Zhang Haotian, Dou Renqin, Zhang Qingli, et al. Research progress and applications of magneto-optical crystal[J]. Journal of Synthetic Crystals, 2020, 49(2): 346-352,357 doi: 10.3969/j.issn.1000-985X.2020.02.027
    [4]
    龙勇, 石自彬, 丁雨憧, 等. 大尺寸TGG晶体生长与性能研究[J]. 压电与声光, 2016, 38(3):433-436 doi: 10.11977/j.issn.1004-2474.2016.03.022

    Long Yong, Shi Zibing, Ding Yuchong, et al. Growth and characterization of large-size terbium gallium garnet single crystal[J]. Piezoelectrics & Acoustooptics, 2016, 38(3): 433-436 doi: 10.11977/j.issn.1004-2474.2016.03.022
    [5]
    Mironov E A, Zheleznov D S, Starobor A V, et al. Large-aperture Faraday isolator based on a terbium gallium garnet crystal[J]. Optics Letters, 2015, 40(12): 2794-2797. doi: 10.1364/OL.40.002794
    [6]
    程勇, 陆益敏, 唐璜, 等. 光学薄膜抗激光损伤研究发展[J]. 强激光与粒子束, 2016, 28:070201 doi: 10.11884/HPLPB201628.070201

    Cheng Yong, Lu Yimin, Tang Huang, et al. Researches on laser damage resistance of optical films[J]. High Power Laser and Particle Beams, 2016, 28: 070201 doi: 10.11884/HPLPB201628.070201
    [7]
    Hopper R W, Uhlmann D R. Mechanism of inclusion damage in laser glass[J]. Journal of Applied Physics, 1970, 41(10): 4023-4037. doi: 10.1063/1.1658407
    [8]
    Salleo A, Genin F Y, Feit M D, et al. Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica[J]. Applied Physics Letters, 2001, 78(19): 2840-2842. doi: 10.1063/1.1362332
    [9]
    Demos S G, DeMange P, Negres R A, et al. Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals[J]. Optics Express, 2010, 18(13): 13788-13804. doi: 10.1364/OE.18.013788
    [10]
    Reyné S, Duchateau G, Natoli J Y, et al. Laser-induced damage of KDP crystals by 1ω nanosecond pulses: influence of crystal orientation[J]. Optics Express, 2009, 17(24): 21652-21665. doi: 10.1364/OE.17.021652
    [11]
    Guo Kesheng, Wang Yanzhi, Chen Ruiyi, et al. Laser-induced layers peeling of sputtering coatings at 1064 nm wavelength[J]. Scientific Reports, 2021, 11: 3783. doi: 10.1038/s41598-020-80304-2
    [12]
    赵元安, 邵建达, 刘晓凤, 等. 光学元件的激光损伤问题[J]. 强激光与粒子束, 2022, 34:011004 doi: 10.11884/HPLPB202234.210331

    Zhao Yuanan, Shao Jianda, Liu Xiaofeng, et al. Tracking and understanding laser damage events in optics[J]. High Power Laser and Particle Beams, 2022, 34: 011004 doi: 10.11884/HPLPB202234.210331
    [13]
    Demos S G, Staggs M, Minoshima K, et al. Characterization of laser induced damage sites in optical components[J]. Optics Express, 2002, 10(25): 1444-1450. doi: 10.1364/OE.10.001444
    [14]
    Papernov S, Schmid A W, Oliver J B, et al. Damage thresholds and morphology of the front-and back-irradiated SiO2 thin films containing gold nanoparticles as artificial absorbing defects[C]//Proceedings of SPIE-The International Society for Optical Engineering. 2008: 159-164.
    [15]
    向程江, 刘晓凤, 陶春先, 等. 1064 nm纳秒激光辐照下HfO2/SiO2增透膜损伤的动态过程研究[J]. 中国激光, 2024, 51:0803101 doi: 10.3788/CJL231071

    Xiang Chengjiang, Liu Xiaofeng, Tao Chuanxian, et al. Dynamic damage process of HfO2/SiO2 anti-reflection coatings under 1064 nm nanosecond laser irradiation[J]. Chinese Journal of Lasers, 2024, 51: 0803101 doi: 10.3788/CJL231071
    [16]
    Wang Yue, Shen Xiaoliang, Zhu Qifeng, et al. A planar waveguide in terbium gallium garnet crystal produced by carbon ion implantation[J]. Materials Research Express, 2019, 6: 086443. doi: 10.1088/2053-1591/ab22e4
    [17]
    Yasuhara R, Snetkov I, Starobor A, et al. Terbium gallium garnet ceramic Faraday rotator for high-power laser application[J]. Optics Letters, 2014, 39(5): 1145-1148. doi: 10.1364/OL.39.001145
    [18]
    胡姝玲, 赵东伟, 牛燕雄, 等. 高功率光隔离器的热效应分析与优化[J]. 红外与激光工程, 2015, 44(11):3186-3190 doi: 10.3969/j.issn.1007-2276.2015.11.004

    Hu Shuling, Zhao Dongwei, Niu Yanxiong, et al. Thermal effects analysis and optimization design of high-power optical isolator[J]. Infrared and Laser Engineering, 2015, 44(11): 3186-3190 doi: 10.3969/j.issn.1007-2276.2015.11.004
    [19]
    Demos S G, Negres R A, Raman R N, et al. Comparison of material response in fused silica and KDP following exit surface laser-induced breakdown[C]//Laser-Induced Damage in Optical Materials. 2013: 132-137.
    [20]
    Sparks M, Duthler C J. Theory of infrared absorption and material failure in crystals containing inclusions[J]. Journal of Applied Physics, 1973, 44(7): 3038-3045. doi: 10.1063/1.1662703
    [21]
    DeMange P P, Negres R A, Radousky H B, et al. Differentiation of defect populations responsible for bulk laser-induced damage in potassium dihydrogen phosphate crystals[J]. Optical Engineering, 2006, 45: 104205. doi: 10.1117/1.2363166
    [22]
    Ashraf M, Shaikh N M, Kandhro G A, et al. Energy penetrated and inverse bremsstrahlung absorption co-efficient in laser ablated germanium plasma[J]. Journal of Molecular Structure, 2020, 1203: 127412. doi: 10.1016/j.molstruc.2019.127412
    [23]
    Yoo J H, Jeong S H, Greif R, et al. Explosive change in crater properties during high power nanosecond laser ablation of silicon[J]. Journal of Applied Physics, 2000, 88(3): 1638-1649. doi: 10.1063/1.373865
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (12) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return