Turn off MathJax
Article Contents
Zhang Zhigang, Yang Wenfeng, Jiang Hongru, et al. Study on Low-Level Control of the Buncher in the Hard X-ray Free Electron Laser Facility[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250106
Citation: Zhang Zhigang, Yang Wenfeng, Jiang Hongru, et al. Study on Low-Level Control of the Buncher in the Hard X-ray Free Electron Laser Facility[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250106

Study on Low-Level Control of the Buncher in the Hard X-ray Free Electron Laser Facility

doi: 10.11884/HPLPB202537.250106
  • Received Date: 2022-04-29
  • Accepted Date: 2025-07-16
  • Rev Recd Date: 2022-07-25
  • Available Online: 2025-08-13
  • Background
    In the Hard X-ray Free Electron Laser (SHINE), the normal-conducting L-band buncher plays a critical role in the compression of electron bunches, significantly improving beam quality meeting the stringent injection requirements of low emittance and low energy spread.
    Purpose
    Due to its 2-cell structure, a dedicated digital low-level RF control system was developed.
    Methods
    This system, based on an architecture comprising FPGA and RF front-end boards, and adopts I/Q demodulation techniques. It incorporates amplitude and phase feedback, frequency tuning, and multi-motor coordinated for field flatness control.
    Results
    During 10 kW continuous-wave (CW) operation the amplitude stability (peak-to-peak) improved from ±0.17% in open-loop to within ±0.03% under closed-loop, while the phase stability (peak-to-peak) was controlled within ±0.05°, and field flatness was maintained within ±2%, fully meeting design specifications. Additionally, a radio-frequency (RF) power calibration method based on ADC acquisition of LLRF was proposed.
    Conclusions
    Experimental results showed calibration error within ±2% when compared with power meter, demonstrating this method’s reliability as an alternative solution for RF power calibration.
  • loading
  • [1]
    Huang G, Campbell K, Doolittle L, et al. LCLS-II gun/buncher LLRF system design[C]//9th International Particle Accelerator Conference. 2018: 2258-2261.
    [2]
    Ha G, Kim K J, Power J G, et al. Bunch shaping in electron linear accelerators[J]. Reviews of Modern Physics, 2022, 94: 025006. doi: 10.1103/RevModPhys.94.025006
    [3]
    Schmidt C, Ayvazyan V, Branlard J, et al. High level software structure for the European XFEL LLRF system[C]//Proceedings of 15th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2015). 2015: 757-760.
    [4]
    Ohshima T, Ego H, Fukui T, et al. Development of a new LLRF system based on MicroTCA. 4 for the SPring-8 storage ring[C]// Proceedings of the 8th International Particle Accelerator Conference. 2017: 3996-3999.
    [5]
    Czuba K, Jezynski T, Hoffmann M, et al. RF backplane for MTCA. 4-based LLRF control system[J]. IEEE Transactions on Nuclear Science, 2013, 60(5): 3615-3619. doi: 10.1109/TNS.2013.2278380
    [6]
    Zhao Yubin, Yin Chengke, Zhang Tongxuan, et al. Digital prototype of LLRF system for SSRF[J]. Chinese Physics C, 2008, 32(9): 758-760. doi: 10.1088/1674-1137/32/9/015
    [7]
    Zhang Zhigang, Zhao Yubin, Xu Kai, et al. Digital LLRF controller for SSRF booster RF system upgrade[J]. Nuclear Science and Techniques, 2015, 26: 030106.
    [8]
    张志刚, 赵玉彬, 徐凯, 等. 上海光源超导三次谐波腔低电平研制[J]. 核技术, 2022, 45:120101 doi: 10.11889/j.0253-3219.2022.hjs.45.120101

    Zhang Zhigang, Zhao Yubin, Xu Kai, et al. Low level radio frequency controller for superconducting third harmonic cavity at SSRF[J]. Nuclear Techniques, 2022, 45: 120101 doi: 10.11889/j.0253-3219.2022.hjs.45.120101
    [9]
    张志刚, 赵玉彬, 徐凯, 等. 基于FPGA的多cell腔的场平坦度控制[J]. 核技术, 2017, 40:020101 doi: 10.11889/j.0253-3219.2017.hjs.40.020101

    Zhang Zhigang, Zhao Yubin, Xu Kai, et al. Control of field flatness based on FPGA for multi-cell cavity[J]. Nuclear Techniques, 2017, 40: 020101 doi: 10.11889/j.0253-3219.2017.hjs.40.020101
    [10]
    张俊强, 俞路阳, 殷重先, 等. 次谐波聚束器相位控制的算法改进[J]. 强激光与粒子束, 2011, 23(8):2179-2182 doi: 10.3788/HPLPB20112308.2179

    Zhang Junqiang, Yu Luyang, Yin Chongxian, et al. Algorithm improvement for phase control of subharmonic buncher[J]. High Power Laser and Particle Beams, 2011, 23(8): 2179-2182 doi: 10.3788/HPLPB20112308.2179
    [11]
    刘熔, 赵凤利, 黄永清, 等. 次谐波聚束系统固态放大器相位特性[J]. 强激光与粒子束, 2009, 21(7):1059-1062

    Liu Rong, Zhao Fengli, Huang Yongqing, et al. Phase characteristics of solid-state amplifiers in sub-harmonic bunchers[J]. High Power Laser and Particle Beams, 2009, 21(7): 1059-1062
    [12]
    樊浩. 储存环中高次谐波腔的有关计算研究[D]. 合肥: 中国科学技术大学, 2013: 27-28

    Fan Hao. Calculation and research of the higher harmonic cavity in storage ring[D]. Hefei: University of Science and Technology of China, 2013: 27-28
    [13]
    李健, 徐新安, 慕振成, 等. 中国散裂中子源直线射频功率源系统的研制[J]. 强激光与粒子束, 2016, 28:085101 doi: 10.11884/HPLPB201628.151013

    Li Jian, Xu Xin’an, Mu Zhencheng, et al. Linac RF power sources development for China spallation neutron source[J]. High Power Laser and Particle Beams, 2016, 28: 085101 doi: 10.11884/HPLPB201628.151013
    [14]
    Bellandi A, Branlard J, Diomede M, et al. Retraction notice to “Calibration of superconducting radio-frequency cavity forward and reflected channels based on stored energy dynamics” [NIMA 1062 (2024) 169172][J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1067: 169733. doi: 10.1016/j.nima.2024.169733
    [15]
    Ma Jinying, Qiu Feng, Shi Longbo, et al. Precise calibration of cavity forward and reflected signals using low-level radio-frequency system[J]. Nuclear Science and Techniques, 2022, 33: 4. doi: 10.1007/s41365-022-00985-4
    [16]
    Xu Tianzhe, Ji Fuhao, Weathersby S, et al. Calculation of RF-induced temporal jitter in ultrafast electron diffraction[DB/OL]. arXiv preprint arXiv: 2408.00937, 2024.
    [17]
    邵琢瑕, 张通, 董自强, 等. 太赫兹近场高通量材料物性测试装置直线加速器微波系统研制[J]. 强激光与粒子束, 2025, 37:014004 doi: 10.11884/HPLPB202537.240168

    Shao Zhuoxia, Zhang Tong, Dong Ziqiang, et al. Development of linear accelerator microwave system for terahertz near-field high-throughput material physical property testing system[J]. High Power Laser and Particle Beams, 2025, 37: 014004 doi: 10.11884/HPLPB202537.240168
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article views (47) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return