Turn off MathJax
Article Contents
Zhang Xiaolu, Chen Yazhou, Zhao Min, et al. Study on the law of single-tone interference effect in unmanned aerial vehicle data links[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250118
Citation: Zhang Xiaolu, Chen Yazhou, Zhao Min, et al. Study on the law of single-tone interference effect in unmanned aerial vehicle data links[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250118

Study on the law of single-tone interference effect in unmanned aerial vehicle data links

doi: 10.11884/HPLPB202537.250118
  • Received Date: 2025-05-10
  • Accepted Date: 2025-07-05
  • Rev Recd Date: 2025-07-05
  • Available Online: 2025-07-18
  • Background
    Unmanned aerial vehicle (UAV) data links operating in battlefield environments are highly susceptible to electromagnetic interference (EMI), frequently causing frame synchronization failures. direct sequence spread spectrum (DSSS) systems, while offering inherent interference resistance, remain vulnerable to intentional EMI attacks through front-door coupling pathways.
    Purpose
    This study aims to establish loss-of-lock threshold models for DSSS-based UAV data links under two critical interference scenarios: in-band single-source single-tone and dual-source dual-tone EMI. The research further seeks to experimentally validate these models.
    Methods
    Through rigorous EMI mechanism analysis with emphasis on front-door coupling effects, the theoretical threshold models were developed for both interference scenarios. Test validation employed EMI injection testing on an operational UAV data link platform. Controlled variables included working signal power, interference frequencies, and interference power. The interference thresholds were obtained from the tests.
    Results
    The test loss-of-lock thresholds demonstrated strong alignment with theoretical predictions across both interference scenarios. For single-source interference, the thresholds exhibited positive correlation with working signal power, and the absolute value of the frequency offset. Under dual-source interference, the thresholds of interference 1 showed inverse correlation with the power of interference 2.
    Conclusions
    The validated threshold models provide a theoretical foundation for EMI sensitivity assessment and test design in UAV data link systems. Key findings indicate: (1) The closer the interference frequency is to the carrier frequency of the working signal, the worse the anti-interference ability of the data link is. (2) Increasing the power of the working signal can improve the anti-interference ability of the data link. (3) Front-door coupling is an important way for EMI to enter the receiver in tactical scenarios. These findings could provide optimized EMI protection for the next generation of UAV data links.
  • loading
  • [1]
    Wang Pengyu, Cheng Yufan, Dong Binhong, et al. WIR-transformer: using transformers for wireless interference recognition[J]. IEEE Wireless Communications Letters, 2022, 11(12): 2472-2476. doi: 10.1109/LWC.2022.3190040
    [2]
    Wang Pengyu, Cheng Yufan, Peng Qihang, et al. Low-bitwidth convolutional neural networks for wireless interference identification[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(2): 557-569. doi: 10.1109/TCCN.2022.3149092
    [3]
    Lu Qiaran, He Fangmin, Wang Ze, et al. Performance analysis for DSSS with short period sequences encountering broadband interference[J]. IEEE Transactions on Vehicular Technology, 2024, 73(11): 16697-16710. doi: 10.1109/TVT.2024.3416032
    [4]
    Gu Hanqing, Liu Xiaxia, Xu Lu, et al. DSSS signal detection based on CNN[J]. Sensors, 2023, 23: 6691. doi: 10.3390/s23156691
    [5]
    Zhang Dongxiao, Zhou Xing, Cheng Erwei, et al. Investigation on effects of HPM pulse on UAV’s datalink[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(3): 829-839. doi: 10.1109/TEMC.2019.2915285
    [6]
    Zhang Dongxiao, Cheng Erwei, Wan Haojiang, et al. Prediction of electromagnetic compatibility for dynamic datalink of UAV[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(5): 1474-1482. doi: 10.1109/TEMC.2018.2867641
    [7]
    Xu Tong, Chen Yazhou, Zhao Min, et al. Adaptive EMS test design method on UAV data link based on Bayesian optimization[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(3): 716-724. doi: 10.1109/TEMC.2023.3261879
    [8]
    罗华. 单音及窄带干扰下DSSS系统处理增益精确分析[J]. 电讯技术, 2014, 54(6): 713-718

    Luo Hua. Accurate analysis of processing gain in direct sequence spread spectrum communication systems under single-tone and narrowband interference[J]. Telecommunication Engineering, 2014, 54(6): 713-718
    [9]
    Gui Xiang, Ng T S. Performance of DS SS system under on-off wideband jamming[J]. Electronics Letters, 1997, 33(7): 557-559. doi: 10.1049/el:19970431
    [10]
    施白雪, 徐慨. 单音干扰对直扩卫星通信系统干扰性能分析[J]. 通信技术, 2019, 52(10): 2359-2364

    Shi Baixue, Xu Kai. Analysis of interference performance of monotone interference to direct spread satellite communication system[J]. Communications Technology, 2019, 52(10): 2359-2364
    [11]
    Lakshmi M L S N S, Anudeepsagar K, Niranjanprasad. Analysis of DSSS performance under communication-jamming environment[C]//Proceedings of 2014 International Conference on Electronics and Communication Systems (ICECS). 2014: 1-8.
    [12]
    李振东, 谭维凤, 康成斌, 等. 直接序列扩频系统抗干扰能力研究[J]. 电子与信息学报, 2021, 43(1): 116-123

    Li Zhendong, Tan Weifeng, Kang Chengbin, et al. Research on anti-interference ability of direct sequence spread spectrum system[J]. Journal of Electronics & Information Technology, 2021, 43(1): 116-123
    [13]
    Chen Yazhou, Zhang Dongxiao, Cheng Erwei, et al. Investigation on susceptibility of UAV to radiated IEMI[C]//Proceedings of 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC). 2018: 718-722.
    [14]
    张冬晓, 陈亚洲, 程二威, 等. 无人机信息链路电磁干扰效应规律研究[J]. 北京理工大学学报, 2019, 39(7): 756-762

    Zhang Dongxiao, Chen Yazhou, Cheng Erwei, et al. Effects of electromagnetic interference (EMI) on information link of UAV[J]. Transactions of Beijing Institute of Technology, 2019, 39(7): 756-762
    [15]
    许彤, 陈亚洲, 王玉明, 等. 无人机数据链带内连续波电磁干扰效应研究[J]. 北京理工大学学报, 2021, 41(10): 1084-1094

    Xu Tong, Chen Yazhou, Wang Yuming, et al. Research on in-band continuous wave electromagnetic interference effect of unmanned aerial vehicle data link[J]. Transactions of Beijing Institute of Technology, 2021, 41(10): 1084-1094
    [16]
    Zhang Dongxiao, Zhao Min, Cheng Erwei, et al. GPR-based EMI prediction for UAV’s dynamic datalink[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(1): 19-29. doi: 10.1109/TEMC.2020.3000919
    [17]
    Oppenheim A V, Willsky A S, Nawab S H. 信号与系统[M]. 刘树棠, 译. 北京: 电子工业出版社, 2013: 180-197

    Oppenheim A V, Willsky A S, Nawab S H. Signals and systems[M]. Liu Shutang, trans. Beijing: Publishing House of Electronics Industry, 2013: 180-197
    [18]
    张冬晓. 无人机装备数据链电磁安全态势评估及防护方法研究[D]. 石家庄: 陆军工程大学, 2019: 76-77

    Zhang Dongxiao. Research on electromagnetic safety assessment and protection method of UAV’s datalink[D]. Shijiazhuang: Army Engineering University, 2019: 76-77
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (73) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return