Turn off MathJax
Article Contents
Li Hongfei, Chen Yazhou, Zhaoming Qu, et al. Graphene-based nonlinear conducting materials for smart electromagnetic protection[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250119
Citation: Li Hongfei, Chen Yazhou, Zhaoming Qu, et al. Graphene-based nonlinear conducting materials for smart electromagnetic protection[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250119

Graphene-based nonlinear conducting materials for smart electromagnetic protection

doi: 10.11884/HPLPB202537.250119
  • Received Date: 2025-05-10
  • Accepted Date: 2025-09-01
  • Rev Recd Date: 2025-09-18
  • Available Online: 2025-09-29
  • Background
    Many traditional electromagnetic protection materials are limited by fixed protection parameters, preventing the passage of both weak electromagnetic information and strong signals from malicious attacks. This cannot meet the current adaptive requirements for electromagnetic protection of high-frequency equipment in the information age. Hence, it is crucial to explore and create a novel self-adaptive and proactive electromagnetic shielding material. ZnO and graphene composites have attracted attention due to their tunable electrical properties and potential for intelligent protection applications.
    Purpose
    This study aims to synthesize and characterize ZnO-coated graphene nanocomposites, with a focus on their nonlinear conductive performance for use in adaptive electromagnetic protection. The goal is to achieve tunable switching behavior through compositional adjustment and microstructural control.
    Methods
    The nanocomposites were synthesized using a solvothermal method. The morphology and distribution of ZnO nanoparticles on graphene were characterized by scanning electron microscopy (SEM). The electrical properties, including nonlinear coefficient and switching thresholds, were measured under varying electric fields.
    Results
    SEM analysis confirmed the uniform coating of ZnO nanoparticles on graphene sheets. The composites exhibited reversible insulating-conductive transition behavior, with threshold electric fields ranging from 0.19 to 0.53 kV/mm and nonlinear coefficients between 4.01 and 5.44 within the 5–8 wt% mass fraction range. The switching threshold was effectively modulated by adjusting the composite concentration.
    Conclusions
    The GN/ZnO nanocomposites demonstrate promising adaptive performance with tunable switching characteristics, making them suitable for intelligent electromagnetic protection devices. This study provides a foundation for the design of advanced composite materials for electronic protection systems.
  • loading
  • [1]
    孙国至, 刘尚合, 陈京平, 等. 战场电磁环境效应对信息化战争的影响[J]. 军事运筹与系统工程, 2006, 20(3): 43-47

    Sun Guozhi, Liu Shanghe, Chen Jingping, et al. The effects on the information warfare of the electromagnetic environments effectiveness in the battle field[J]. Military Operations Research and Assessment, 2006, 20(3): 43-47
    [2]
    刘尚合, 刘卫东. 电磁兼容与电磁防护相关研究进展[J]. 高电压技术, 2014, 40(6): 1605-1613

    Liu Shanghe, Liu Weidong. Progress of relevant research on electromagnetic compatibility and electromagnetic protection[J]. High Voltage Engineering, 2014, 40(6): 1605-1613
    [3]
    赵蒙, 达新宇, 张亚普. 电磁脉冲武器及其防护技术概述[J]. 飞航导弹, 2014(5): 33-37

    Zhao Meng, Da Xinyu, Zhang Yapu. An overview of electromagnetic pulse weapons and their protective technologies[J]. Aerospace Technology, 2014(5): 33-37
    [4]
    谭志良, 胡小锋, 毕军建, 等. 电磁脉冲防护理论与技术[M]. 北京: 国防工业出版社, 2013

    Tan Zhiliang, Hu Xiaofeng, Bi Junjian, et al. Electromagnetic pulse protection theory and technology[M]. Beijing: National Defense Industry Press, 2013
    [5]
    陈京平, 刘尚合, 谭志良, 等. ESD脉冲对集成电路损伤效应的实验研究[J]. 高电压技术, 2007, 33(3): 121-124

    Chen Jingping, Liu Shanghe, Tan Zhiliang, et al. Experimental study of the damage effects of integrated circuits stressed with ESD pulse[J]. High Voltage Engineering, 2007, 33(3): 121-124
    [6]
    曲兆明, 王庆国. 导电导磁屏蔽复合材料的研究进展[J]. 材料导报, 2011, 25(1): 138-141

    Qu Zhaoming, Wang Qingguo. Development of conductive and magnetic shielding composites[J]. Materials Review, 2011, 25(1): 138-141
    [7]
    雷忆三, 孙丽君. 智能电磁防护材料及技术研究进展[J]. 现代工业经济和信息化, 2012, 2(18): 74-77

    Lei Yisan, Sun Lijun. Research on status and development trend of intelligent electromagnetic protection materials and technology[J]. Modern Industrial Economy and Informationization, 2012, 2(18): 74-77
    [8]
    Hou Xin, Feng Xuerong, Jiang Ke, et al. Recent progress in smart electromagnetic interference shielding materials[J]. Journal of Materials Science & Technology, 2024, 186: 256-271.
    [9]
    边永亮, 王永胜, 郭文卿, 等. 关于智能电磁防护材料及技术的研究[J]. 信息系统工程, 2022(4): 145-148

    Bian Yongliang, Wang Yongsheng, Guo Wenqing, et al. Research on intelligent electromagnetic protection materials and technologies[J]. Information System Engineering, 2022(4): 145-148
    [10]
    Huang Xiaoyan, Han Lu, Yang Xiao, et al. Smart dielectric materials for next-generation electrical insulation[J]. iEnergy, 2022, 1(1): 19-49. doi: 10.23919/IEN.2022.0007
    [11]
    刘嘉玮, 王建江, 许宝才. 场致电阻材料在强电磁脉冲防护中的应用展望[J]. 功能材料, 2017, 48(10): 10029-10035

    Liu Jiawei, Wang Jianjiang, Xu Baocai. Application and prospect of field induced resistance material in strong electromagnetic pulse protection[J]. Journal of Functional Materials, 2017, 48(10): 10029-10035
    [12]
    Daughton J M. Magnetoresistive memory technology[J]. Thin Solid Films, 1992, 216(1): 162-168. doi: 10.1016/0040-6090(92)90888-I
    [13]
    Mazumder M R H, Govindaraj P, Salim N, et al. Digitalization of composite manufacturing using nanomaterials based piezoresistive sensors[J]. Composites Part A: Applied Science and Manufacturing, 2025, 188: 108578. doi: 10.1016/j.compositesa.2024.108578
    [14]
    Yang L X, Rohde G, Hanff K, et al. Bypassing the structural bottleneck in the ultrafast melting of electronic order[J]. Physical Review Letters, 2020, 125: 266402. doi: 10.1103/PhysRevLett.125.266402
    [15]
    Fan Yicheng, Kang Qin, Zhang Kun, et al. Design criterion based on the cohesive energy and defect patterns of VO2 thermally induced phase transition materials[J]. Ceramics International, 2020, 46(9): 13615-13621. doi: 10.1016/j.ceramint.2020.02.147
    [16]
    Yang Wenhu, Wang Jian, Luo Suibin, et al. ZnO-decorated carbon nanotube hybrids as fillers leading to reversible nonlinear I-V behavior of polymer composites for device protection[J]. ACS Applied Materials & Interfaces, 2016, 8(51): 35545-35551.
    [17]
    Zhang Guozhen, Wu Hao, Chen C, et al. Transparent capacitors based on nanolaminate Al2O3/TiO2/Al2O3 with H2O and O3 as oxidizers[J]. Applied Physics Letters, 2014, 104: 163503. doi: 10.1063/1.4872470
    [18]
    Yoon S H, Kim S H, Kim D Y. Correlation between I (current)-V (voltage) characteristics and thermally stimulated depolarization current of Mn-doped BaTiO3 multilayer ceramic capacitor[J]. Journal of Applied Physics, 2013, 114: 074102. doi: 10.1063/1.4818947
    [19]
    Zhang Guozhen, Wu Hao, Chen Chao, et al. Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3[J]. Nanoscale Research Letters, 2015, 10: 76. doi: 10.1186/s11671-015-0784-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (35) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return