Turn off MathJax
Article Contents
Jiang jinbo, Chu Hangge, Ren Yingjie, et al. Research on waveform optimization of quasi-square wave pulse source based on PFN-Marx[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250122
Citation: Jiang jinbo, Chu Hangge, Ren Yingjie, et al. Research on waveform optimization of quasi-square wave pulse source based on PFN-Marx[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250122

Research on waveform optimization of quasi-square wave pulse source based on PFN-Marx

doi: 10.11884/HPLPB202537.250122
  • Received Date: 2025-05-12
  • Accepted Date: 2025-07-29
  • Rev Recd Date: 2025-06-28
  • Available Online: 2025-09-02
  • Background
    Pulse drive sources are a critical component of high-power microwave systems. Existing drive sources based on Tesla+PFL or LTD technology offer good waveform quality but are limited by their large size and weight. PFN-Marx technology sequentially stacks voltages during pulse discharge, requiring relatively low insulation, making it an ideal technical approach for drive source miniaturization. However, current PFN-Marx-based drive sources struggle to balance compact structural design with output waveform quality.
    Purpose
    This study aims to design a compact high-power pulse drive source based on PFN-Marx technology to meet the requirements of a specific high-power microwave system.
    Methods
    To achieve this goal, a 7-stage unipolar pulse charging PFN-Marx generator is employed, with a high-power constant-current charging power supply powered by lithium batteries used to charge the primary capacitor of the Tesla transformer. The PFN modules are designed with identical charging loop inductors to ensure synchronized pulse charging waveforms, and their modular structure allows for flexible scalability. Additionally, the air-core Tesla transformer (coupling coefficient >0.8) is integrated with the PFN-Marx within a high-voltage chamber filled with SF6 gas to ensure insulation.
    Results
    The results show that the drive source outputs a single pulse energy of 45.6 J, and can output a quasi-square wave pulse at a 75 Ω load, with an amplitude of −189.2 kV, a pulse width of 93.2 ns, a rise time of 8.4 ns, and a peak power of 477 MW. The lithium-ion battery charging and control power supply has dimensions of 482 mm × 443 mm × 177 mm and weighs 12.6 kg; the integrated Tesla transformer and PFN-Marx generator have dimensions of Φ370 × 848 mm and weigh 28.7 kg; at a repetition rate of 5 Hz, the average output voltage is -183.4 kV, with a voltage dispersion of 4.1%.
    Conclusions
    Therefore, this compact PFN-Marx-based pulse drive source achieves both miniaturization and high-quality waveform output, laying the foundation for the development of higher-power, higher-performance compact pulse drive sources.
  • loading
  • [1]
    夏文锋, 张冬晓, 刘启晨, 等. 一种新型高功率轻小型化脉冲驱动源研制[J]. 现代应用物理, 2023, 14: 030506

    Xia Wenfeng, Zhang Dongxiao, Liu Qichen, et al. A novel lightweight and miniaturized high power pulse drive source[J]. Modern Applied Physics, 2023, 14: 030506
    [2]
    李嵩, 杨汉武, 樊玉伟, 等. HEART-50重复频率高功率脉冲驱动源研究[J]. 强激光与粒子束, 2022, 34: 095014 doi: 10.11884/HPLPB202234.210526

    Li Song, Yang Hanwu, Fan Yuwei, et al. High power repetitive rate pulse generator HEART-50[J]. High Power Laser and Particle Beams, 2022, 34: 095014 doi: 10.11884/HPLPB202234.210526
    [3]
    王利民. 固态直线变压器驱动源的探索研究[D]. 成都: 西南交通大学, 2022

    Wang Limin. Study on solid-state linear transformer driver[D]. Chengdu: Southwest Jiaotong University, 2022
    [4]
    宋法伦. 10 GW级重复频率高功率微波驱动源小型化技术[C]//2017年版中国工程物理研究院科技年报. 2018: 167-171

    Song Falun. Miniaturization technology of 10 GW-class repetitive high-power microwave driver source[C]//Annual Report of the China Academy of Engineering Physics (2017 Edition). 2018: 167-171
    [5]
    罗敏. 紧凑型重复频率高功率微波驱动源技术[C]//2016年版中国工程物理研究院科技年报. 2016: 72-77

    Luo Min. Compact repetitive high-power microwave driver source technology[C]//Annual Report of the China Academy of Engineering Physics (2016 Edition). 2016: 72-77
    [6]
    耿力东, 谢卫平, 羊强, 等. 基于PFN-Marx技术的200 keV脉冲X射线源设计与实验[J]. 强激光与粒子束, 2022, 34: 085002

    Geng Lidong, Xie Weiping, Yang Qiang, et al. Design and experiments of the 200 keV pulse X-ray source based on PFN-Marx technology[J]. High Power Laser and Particle Beams, 2022, 34: 085002
    [7]
    张昊冉. 重频紧凑PFN-Marx型脉冲驱动源研究[D]. 长沙: 国防科技大学, 2021

    Zhang Haoran. Research on repetitive compact PFN-Marx type pulse driving sources[D]. Changsha: National University of Defense Technology, 2021
    [8]
    刘世飞, 张建德, 张自成. 高功率紧凑PFN-Marx发生器研究进展综述[J]. 强激光与粒子束, 2022, 34: 075001 doi: 10.11884/HPLPB202234.210483

    Liu Shifei, Zhang Jiande, Zhang Zicheng. Review of high power compact pulse forming network-Marx generators[J]. High Power Laser and Particle Beams, 2022, 34: 075001 doi: 10.11884/HPLPB202234.210483
    [9]
    Tewari S V, Umbarkar S B, Agarwal R, et al. Development and analysis of PFN based compact Marx generator using finite integration technique for an antenna load[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2684-2690. doi: 10.1109/TPS.2013.2279483
    [10]
    Lassalle F, Morell A, Loyen A, et al. Development and test of a 400-kV PFN Marx with compactness and rise time optimization[J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3313-3319. doi: 10.1109/TPS.2018.2837344
    [11]
    Zhang Haoran, Shu Ting, Zhang Zicheng. An ultra-compact 260 MW PFN-Marx generator[C]//Proceedings of 2020 IEEE International Conference on High Voltage Engineering and Application. 2020: 1-4.
    [12]
    Zhang Haoran, Shu Ting, Liu Shifei, et al. A compact modular 5 GW pulse PFN-Marx generator for driving HPM source[J]. Electronics, 2021, 10: 545. doi: 10.3390/electronics10050545
    [13]
    伍友成, 冯传均, 付佳斌, 等. 基于PFN-Marx技术的紧凑型重频脉冲功率源[J]. 强激光与粒子束, 2024, 36: 055019 doi: 10.11884/HPLPB202436.230354

    Wu Youcheng, Feng Chuanjun, Fu Jiabin, et al. A compact PFN-Marx repetitive pulsed power source[J]. High Power Laser and Particle Beams, 2024, 36: 055019 doi: 10.11884/HPLPB202436.230354
    [14]
    Huang Liyang, Xiang Zhongwu, Deng Bingfang, et al. A compact gigawatt pulsed power generator for high-power microwave application[J]. IEEE Transactions on Electron Devices, 2023, 70(7): 3885-3891. doi: 10.1109/TED.2023.3279811
    [15]
    甘延青, 宋法伦, 李飞, 等. 高功率重复频率脉冲充电电源设计与实验研究[J]. 强激光与粒子束, 2018, 30: 065003 doi: 10.11884/HPLPB201830.170335

    Gan Yanqing, Song Falun, Li Fei, et al. Design and experimental research of high power repetitive pulse charging power supply[J]. High Power Laser and Particle Beams, 2018, 30: 065003 doi: 10.11884/HPLPB201830.170335
    [16]
    冯传均, 戴文峰, 郝世荣, 等. 猝发重频高压大功率脉冲充电电源研制[J]. 电子技术应用, 2024, 50(5): 102-105

    Feng Chuanjun, Dai Wenfeng, Hao Shirong, et al. Development of high voltage and high power pulse charging power supply with burst repetition frequency[J]. Application of Electronic Technique, 2024, 50(5): 102-105
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article views (6) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return