Turn off MathJax
Article Contents
Cao Lei, Feng Xixi, Chen Zidong, et al. Effect of microwave parameters on the coverage of strong-coupled region of metal cavity[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250138
Citation: Cao Lei, Feng Xixi, Chen Zidong, et al. Effect of microwave parameters on the coverage of strong-coupled region of metal cavity[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250138

Effect of microwave parameters on the coverage of strong-coupled region of metal cavity

doi: 10.11884/HPLPB202537.250138
  • Received Date: 2025-05-16
  • Accepted Date: 2025-08-20
  • Rev Recd Date: 2025-09-04
  • Available Online: 2025-09-13
  • Background
    High-power microwave (HPM) pulses, which can interfere with or damage electronic components and circuits, have attracted considerable research interest in recent years. Aperture coupling represents a primary mechanism for such pulses to penetrate shielded metallic enclosures, significantly affecting the electromagnetic compatibility and resilience of electronic systems. Although substantial studies have focused on shielding effectiveness and resonant behaviors, the spatial distribution of coupling parameters—particularly the extent of strongly coupled regions within the cavity—remains inadequately investigated. This paper proposes a quantitative metric termed “the coverage rate of strong-coupled region” to better evaluate HPM backdoor coupling effects.
    Purpose
    The objective is to systematically examine the influence of key HPM waveform parameters on this coverage rate within a representative metallic cavity.
    Methods
    A three-dimensional simulation model of a rectangular metallic cavity with an aperture was developed using the finite-difference time-domain (FDTD) method. The internal field distribution was monitored via an array of electric field probes. Numerical simulations were performed to assess the effects of various HPM parameters, including frequency, pulse width, the pulse rise time, and polarization angle, on the coverage of strongly coupled regions. The coverage rate was markedly higher at the cavity’s inherent resonant frequencies than at non-resonant frequencies.
    Results
    Increasing the pulse width led to a saturation of coverage beyond a specific threshold. Variations in polarization angle from horizontal to vertical considerably enhanced the coverage, with vertical polarization yielding the maximum value. Superimposing multiple resonant frequencies effectively compensated for weakly coupled areas, further increasing the overall coverage. In contrast, the pulse rise time had a negligible effect on the coverage rate. The proposed the coverage rate of strong-coupled region effectively addresses the practical dilemma wherein strong local coupling does not necessarily lead to significant system-level effects.
    Conclusions
    This metric provides a quantitative basis for optimizing the alignment between sensitive components and highly coupled zones. Frequency and polarization are identified as decisive parameters for enhancing coupling effectiveness, while pulse width and multi-frequency excitation can be utilized to achieve more uniform and robust coupling coverage. These findings offer valuable guidance for the design and assessment of HPM protection measures and electromagnetic compatibility analysis.
  • loading
  • [1]
    Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 2nd ed. New York: CRC Press, 2007.
    [2]
    Tatum J. High-power microwave directed energy weapons: a model and simulation toolbox[J]. DSIAC Journal, 2015, 1(2): 20-22.
    [3]
    Wang Jianguo, Yu Hanqing, Liu Guozhi, et al. Numerical studies on resonant and enhancement effects for coupling of microwave pulses into narrow slots[J]. Journal of Electronics (China), 1998, 15(2): 174-181. doi: 10.1007/s11767-998-0053-4
    [4]
    章勇华, 黄文华, 李平, 等. 集成电路HPM损伤机理分析[J]. 现代应用物理, 2023, 14: 020501 doi: 10.12061/j.issn.2095-6223.2023.020501

    Zhang Yonghua, Huang Wenhua, Li Ping, et al. Analysis of high power microwave damage mechanism in integrated circuits[J]. Modern Applied Physics, 2023, 14: 020501 doi: 10.12061/j.issn.2095-6223.2023.020501
    [5]
    Bäckström M G, Lövstrand K G. Susceptibility of electronic systems to high-power microwaves: summary of test experience[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(3): 396-403. doi: 10.1109/TEMC.2004.831814
    [6]
    刘顺坤, 傅君眉, 周辉, 等. 电磁脉冲对目标腔体的孔缝耦合效应数值研究[J]. 电波科学学报, 1999, 14(2): 202-206 doi: 10.3969/j.issn.1005-0388.1999.02.014

    Liu Shunkun, Fu Junmei, Zhou Hui, et al. Numerical studies on coupling effects of EMP into slots[J]. Chinese Journal of Radio Science, 1999, 14(2): 202-206 doi: 10.3969/j.issn.1005-0388.1999.02.014
    [7]
    鲁童童. 基于FDTD的电磁脉冲孔缝耦合效应仿真分析[D]. 南京: 南京航空航天大学, 2021: 27-36

    Lu Tongtong. Simulation analysis of electromagnetic pulse slot coupling effect based on FDTD[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 27-36
    [8]
    付继伟, 侯朝桢, 窦丽华. 电磁脉冲斜入射时对孔缝耦合效应的数值分析[J]. 强激光与粒子束, 2003, 15(3): 249-252

    Fu Jiwei, Hou Chaozhen, Dou Lihua. Numerical analysis on hole coupling effects of an oblique incidence of electromagnetic pulse[J]. High Power Laser and Particle Beams, 2003, 15(3): 249-252
    [9]
    曾美玲, 蔡金良, 易早, 等. 孔缝对金属腔体强电磁脉冲耦合特性影响研究[J]. 强激光与粒子束, 2021, 33: 043004 doi: 10.11884/HPLPB202133.200336

    Zeng Meiling, Cai Jinliang, Yi Zao, et al. Effect of aperture on shielding performance of metal cavity under excitation of high-intensity electromagnetic pulse[J]. High Power Laser and Particle Beams, 2021, 33: 043004 doi: 10.11884/HPLPB202133.200336
    [10]
    周金山, 刘国治, 彭鹏, 等. 不同形状孔缝微波耦合的实验研究[J]. 强激光与粒子束, 2004, 16(1): 88-90

    Zhou Jinshan, Liu Guozhi, Peng Peng, et al. Experimental studies on microwave coupling coefficient for different-shaped apertures[J]. High Power Laser and Particle Beams, 2004, 16(1): 88-90
    [11]
    陈修桥, 张建华, 胡以华. 电磁脉冲与窄缝腔体耦合共振特性分析[J]. 强激光与粒子束, 2003, 15(5): 481-484

    Chen Xiuqiao, Zhang Jianhua, Hu Yihua. Analysis on resonant characteristic of electromagnetic pulse coupling into narrow slot and cavity with slot[J]. High Power Laser and Particle Beams, 2003, 15(5): 481-484
    [12]
    王建国, 屈华民, 范如玉, 等. 孔洞厚度对高功率微波脉冲耦合的影响[J]. 强激光与粒子束, 1994, 6(2): 282-286

    Wang Jianguo, Qu Huamin, Fan Ruyu, et al. Effects of slot depth on couplings of high power microwave pulses[J]. High Power Laser and Particle Beams, 1994, 6(2): 282-286
    [13]
    Siah E S, Sertel K, Volakis J L, et al. Coupling studies and shielding techniques for electromagnetic penetration through apertures on complex cavities and vehicular platforms[J]. IEEE Transactions on Electromagnetic Compatibility, 2003, 45(2): 245-256.
    [14]
    王建国, 屈华民, 华鸣, 等. 微波脉冲与圆柱腔体耦合的时域有限差分模拟[J]. 计算物理, 1995, 12(4): 10-18

    Wang Jianguo, Qu Huamin, Hua Ming, et al. FDTD simulations of microwave pulse coupling into cylindrical cavities[J]. Chinese Journal of Computational Physics, 1995, 12(4): 10-18
    [15]
    陈伟华, 张厚, 杨宇军. 电磁脉冲对双层屏蔽腔的孔洞耦合特性研究[J]. 辐射防护, 2007, 27(5): 286-290

    Chen Weihua, Zhang Hou, Yang Yujun. Research on coupling characteristic of electromagnetic pulse into the double layer shielding cavity through aperture[J]. Radiation Protection, 2007, 27(5): 286-290
    [16]
    田东, 陈少昌. 复杂矩形腔屏蔽效能分析[J]. 电光与控制, 2010, 17(10): 93-96 doi: 10.3969/j.issn.1671-637X.2010.10.023

    Tian Dong, Chen Shaochang. Shielding effectiveness of complex rectangular cavity[J]. Electronics Optics & Control, 2010, 17(10): 93-96 doi: 10.3969/j.issn.1671-637X.2010.10.023
    [17]
    陈伟华, 张厚, 王剑, 等. 电磁脉冲对计算机机箱的耦合效应[J]. 工程设计学报, 2007, 14(5): 409-413 doi: 10.3785/j.issn.1006-754X.2007.05.014

    Chen Weihua, Zhang Hou, Wang Jian, et al. Research on coupling effect of electromagnetic pulse and computer box[J]. Journal of Engineering Design, 2007, 14(5): 409-413 doi: 10.3785/j.issn.1006-754X.2007.05.014
    [18]
    汪柳平, 高攸纲, 沈远茂, 等. 装有PCB有孔矩形腔屏蔽效能的传输线法分析[J]. 电波科学学报, 2008, 23(4): 740-744 doi: 10.3969/j.issn.1005-0388.2008.04.029

    Wang Liuping, Gao Yougang, Shen Yuanmao, et al. Analysis of shielding effectiveness of rectangular cavity of loaded PCB with aperture by transmission line method[J]. Chinese Journal of Radio Science, 2008, 23(4): 740-744 doi: 10.3969/j.issn.1005-0388.2008.04.029
    [19]
    Wallyn W, De Zutter D. Modeling the shielding effectiveness and resonances of metallic shielding enclosures loaded with PCBs[C]//Proceedings of 2021 IEEE EMC International Symposium. Symposium Record. International Symposium on Electromagnetic Compatibility. 2001: 691-696.
    [20]
    王建国, 刘国治, 俞汉清, 等. 微波孔缝耦合函数的研究[J]. 高功率微波技术, 1996(2): 20-31

    Wang Jianguo, Liu Guozhi, Yu Hanqing, et al. Investigation on coupling function for coupling of microwave into slots[J]. High Power Microwave Technology, 1996(2): 20-31
    [21]
    Pozar D M. Microwave engineering[M]. 3rd ed. Beijing: John Wiley & Sons, 2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article views (13) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return