Turn off MathJax
Article Contents
Sun Chengcheng, Guo Jin, Wan Gang, et al. Simulation on electromagnetic characteristics of different layout methods of railgun ammunition fuze circuit components[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250143
Citation: Sun Chengcheng, Guo Jin, Wan Gang, et al. Simulation on electromagnetic characteristics of different layout methods of railgun ammunition fuze circuit components[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250143

Simulation on electromagnetic characteristics of different layout methods of railgun ammunition fuze circuit components

doi: 10.11884/HPLPB202537.250143
  • Received Date: 2025-03-19
  • Accepted Date: 2025-07-21
  • Rev Recd Date: 2025-07-21
  • Available Online: 2025-07-28
  • Background
    Precision-guided ammunition for electromagnetic railguns is gradually becoming a key area of competition among nations, which imposes new requirements on fuzes for electromagnetic railgun ammunition. Modern fuzes contain a large number of electronic components, and during the launch of electromagnetic railgun projectiles, the fuze is exposed to strong magnetic fields. These fields can interfere with the fuze's electronic components, leading to malfunctions or even damage. As a result, most mature electromagnetic railguns currently use kinetic energy projectiles or mechanical fuzes.
    Purpose
    A reasonable arrangement of the fuze circuit module can reduce the structural thickness and weight of the electromagnetic shielding shell for the fuze circuit, while effectively ensuring the performance of the fuze circuit.
    Methods
    In this paper, a quasi-steady-state simulation model of the electromagnetic railgun is established. The electromagnetic induction performance of the circuit module under two different arrangement schemes is calculated and analyzed. The responses such as the magnetic field distribution, induced current, electromagnetic volume force density, and induced electromotive force on the fuze circuit module are obtained respectively.
    Results
    When the fuze circuit module is arranged parallel to the projectile axis, although the overall magnetic field strength is greater than when it is arranged perpendicular to the projectile axis, the peak magnetic field strength in the perpendicular arrangement covers an entire surface of the circuit board, whereas in the parallel arrangement, the peak magnetic field strength is only at the edge of the circuit module’s end. When the fuze circuit module is arranged parallel to the projectile axis, the induced eddy current, electromagnetic volume force density, and induced electromotive force are all significantly smaller than those in the perpendicular arrangement.
    Conclusions
    For the fuze circuit module of electromagnetic railgun ammunition, arranging it parallel to the projectile axis can more effectively reduce the impact of the electromagnetic field during launch. Additionally, sensitive components should be avoided being placed at the ends and edges of the circuit module. This can greatly reduce the structural size, thickness and, weight of the shell for electromagnetic shielding of the fuze circuit components, so as to optimize the overall structure of the fuze and reduce the total weight of the fuze.
  • loading
  • [1]
    吕庆敖, 雷彬, 李治源, 等. 电磁轨道炮军事应用综述[J]. 火炮发射与控制学报, 2009, 30(1): 92-96 doi: 10.3969/j.issn.1673-6524.2009.01.023

    Lü Qing’ao, Lei Bin, Li Zhiyuan, et al. Summary of electromagnetic railgun military application[J]. Journal of Gun Launch & Control, 2009, 30(1): 92-96 doi: 10.3969/j.issn.1673-6524.2009.01.023
    [2]
    《新概念武器》编委会. 新概念武器[M]. 北京: 航空工业出版社, 2009: 3-78

    Editorial Board of New Concept Weapon. New concept weapon[M]. Beijing: Aviation Industry Press, 2009: 3-78
    [3]
    中国人民解放军总装备部军事训练教材编辑工作委员会. 军事技术概论[M]. 北京: 国防工业出版社, 2006: 333-350

    Editorial Committee of Military Training Textbooks of the General Armament Department of the Chinese People's Liberation Army. Introduction to military technology[M]. Beijing: National Defense Industry Press, 2006: 333-350
    [4]
    McNab I R, Beach F C. Naval railguns[J]. IEEE Transactions on Magnetics, 2007, 43(1): 463-468. doi: 10.1109/TMAG.2006.887446
    [5]
    常馨月, 于歆杰, 刘旭堃. 一种实现电枢出膛速度控制的电磁轨道炮脉冲电源触发策略[J]. 电工技术学报, 2018, 33(10): 2261-2267

    Chang Xinyue, Yu Xinjie, Liu Xukun. A velocity-controlling triggering strategy of capacitive pulsed power supply electromagnetic railgun system[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2261-2267
    [6]
    李阳, 秦涛, 朱捷, 等. 电磁轨道炮发展趋势及其关键控制技术[J]. 现代防御技术, 2019, 47(4): 19-23

    Li Yang, Qin Tao, Zhu Jie, et al. Development trend and key control technology of electromagnetic rail gun[J]. Modern Defence Technology, 2019, 47(4): 19-23
    [7]
    周媛, 李敏堂, 王菁华. 美国电磁轨道发射技术现状及特点分析[J]. 火力与指挥控制, 2010, 35(9): 1-4 doi: 10.3969/j.issn.1002-0640.2010.09.001

    Zhou Yuan, Li Mintang, Wang Jinghua. Analysis on present state and characteristics of the U. S. electromagnetic rail launch technology[J]. Fire Control & Command Control, 2010, 35(9): 1-4 doi: 10.3969/j.issn.1002-0640.2010.09.001
    [8]
    张世英, 裴桂艳, 张俊. 美国海军电磁轨道炮研发计划评析[J]. 现代舰船, 2011(9): 46-49

    Zhang Shiying, Pei Guiyan, Zhang Jun. Analysis of American navy electromagnetic rail gun search plan[J]. Modern Ships, 2011(9): 46-49
    [9]
    杨宇鑫. 电磁发射环境下弹载机电系统仿真、设计与试验研究[D]. 南京: 南京理工大学, 2022

    Yang Yuxin. Simulation of electromagnetic launching environment, design and test for projectile-borne electromechanical systems[D]. Nanjing: Nanjing University of Science & Technology, 2022
    [10]
    王航宇, 卢发兴, 许俊飞, 等. 舰载电磁轨道炮作战使用问题的思考[J]. 海军工程大学学报, 2016, 28(3): 1-6

    Wang Hangyu, Lu Faxing, Xu Junfei, et al. Application of shipborne electromagnetic rail gun in operation[J]. Journal of Naval University of Engineering, 2016, 28(3): 1-6
    [11]
    汤铃铃. 电磁轨道炮弹引信所处强磁场环境分析、屏蔽及利用[D]. 南京: 南京理工大学, 2014

    Tang Lingling. Analysis of electromagnetic railgun projectile fuze’s high magnetic field environment and its shield design and utilization[D]. Nanjing: Nanjing University of Science & Technology, 2014
    [12]
    Ciolini R, Schneider M, Tellini B. The use of electronic components in railgun projectiles[J]. IEEE Transactions on Magnetics, 2009, 45(1): 578-583. doi: 10.1109/TMAG.2008.2008431
    [13]
    曹根荣, 乔志明, 梁春燕, 等. 轨道炮发射过程中电火工品的可靠性评估[J]. 火炮发射与控制学报, 2024, 45(2): 78-84,92

    Cao Genrong, Qiao Zhiming, Liang Chunyan, et al. Reliability evaluation of the electric explosive device during the railgun’s launching process[J]. Journal of Gun Launch & Control, 2024, 45(2): 78-84,92
    [14]
    罗会彬, 梅新华. 强磁场对电磁发射弹药引信的危害及防护[J]. 数字海洋与水下攻防, 2021, 4(1): 58-62

    Luo Huibin, Mei Xinhua. Hazards and protection to electromagnetic-launched ammunition fuze under high magnetic field environment[J]. Digital Ocean & Underwater Warfare, 2021, 4(1): 58-62
    [15]
    廖桥生. 电磁轨道炮膛内强磁场屏蔽与磁保险引信样机设计[D]. 南京: 南京理工大学, 2016

    Liao Qiaosheng. Design of a prototype for strong magnetic field shielding and magnetic safety fuze in the Chaber of an electromagnetic railgun[D]. Nanjing: Nanjing University of Science & Technology, 2016
    [16]
    吉晓菲, 孙发鱼, 白瑞青, 等. 电磁炮弹丸遥测装置的电磁防护方法[J]. 探测与控制学报, 2019, 41(2): 57-62

    Ji Xiaofei, Sun Fayu, Bai Ruiqing, et al. Electromagnetic protection method for electromagnetic projectile telemetry device[J]. Journal of Detection & Control, 2019, 41(2): 57-62
    [17]
    文瑞虎, 栗苹, 黄峥, 等. 电磁轨道炮无线电引信综合电磁防护方法[J]. 兵工学报, 2024, 45(11): 3833-3840 doi: 10.12382/bgxb.2023.0944

    Wen Ruihu, Li Ping, Huang Zheng, et al. Comprehensive electromagnetic protection method of radio fuze for electromagnetic railgun[J]. Acta Armamentarii, 2024, 45(11): 3833-3840 doi: 10.12382/bgxb.2023.0944
    [18]
    郭仁荃, 李豪杰, 杨宇鑫. 基于COMSOL的轨道炮弹引信部位磁场组合屏蔽仿真[J]. 探测与控制学报, 2020, 42(3): 8-13,19

    Guo Renquan, Li Haojie, Yang Yuxin. COMSOL simulation of railgun projectile fuze combination magnetic shielding[J]. Journal of Detection & Control, 2020, 42(3): 8-13,19
    [19]
    Yin Dongmei, Yu Nan, Sun Chengcheng, et al. Numerical analysis of the in-bore magnetic shielding of the series-enhanced electromagnetic railgun[J]. IEEE Transactions on Plasma Science, 2024, 52(9): 4705-4716. doi: 10.1109/TPS.2024.3478209
    [20]
    向红军, 曹根荣, 乔志明, 等. 大口径轨道炮弹药运用中多物理场环境表征[J]. 陆军工程大学学报, 2024, 3(1): 56-62

    Xiang Hongjun, Cao Genrong, Qiao Zhiming, et al. Multi-physical field environment characterization of projectiles in large-caliber railgun launching[J]. Journal of Army Engineering University of PLA, 2024, 3(1): 56-62
    [21]
    葛霞. 电磁炮发射过程中电磁场环境的分析与应用研究[D]. 南京: 南京理工大学, 2009

    Ge Xia. Analysis and application research on the electromagnetic field environment during the emission process of electromagnetic cannons[D]. Nanjing: Nanjing University of Science & Technology, 2009
    [22]
    宋晨阳. 圆膛四轨电磁炮磁场环境对弹载无线信号发射检测系统的影响研究[D]. 南京: 南京理工大学, 2019

    Song Chenyang. Research on the influence of magnetic field environment of round-barreled four-barrel electromagnetic gun on the wireless signal transmission detection system of the projectile[D]. Nanjing: Nanjing University of Science & Technology, 2019
    [23]
    高博, 邱群先, 郄文静, 等. 电磁轨道炮电枢多场耦合分析与试验研究[J]. 电工技术学报, 2020, 35(s2): 341-345

    Gao Bo, Qiu Qunxian, Qie Wenjing, et al. Multi-field coupling analysis and experimental research on armature of electromagnetic railgun[J]. Transactions of China Electrotechnical Society, 2020, 35(s2): 341-345
    [24]
    王明东, 王天祥. 新概念武器的现状与发展趋势[J]. 四川兵工学报, 2014, 35(6): 1-5

    Wang Mingdong, Wang Tianxiang. Actuality and development trend of new concept weapons[J]. Journal of Sichuan Ordnance, 2014, 35(6): 1-5
    [25]
    乔志明, 雷彬, 吕庆敖, 等. 电磁轨道炮关键技术与发展趋势分析[J]. 火炮发射与控制学报, 2016, 37(2): 91-95

    Qiao Zhiming, Lei Bin, Lü Qing’ao, et al. Analysis of the key technologies and development tendency of electromagnetic railguns[J]. Journal of Gun Launch & Control, 2016, 37(2): 91-95
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (45) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return