Turn off MathJax
Article Contents
Bai Yuesheng, Liu Jun, Wang Yuankai. Design of an ultra-wideband array direction finding system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250145
Citation: Bai Yuesheng, Liu Jun, Wang Yuankai. Design of an ultra-wideband array direction finding system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250145

Design of an ultra-wideband array direction finding system

doi: 10.11884/HPLPB202537.250145
  • Received Date: 2025-05-21
  • Accepted Date: 2025-08-26
  • Rev Recd Date: 2025-08-27
  • Available Online: 2025-09-08
  • Background
    With the advancement of electronic reconnaissance, communication, and radar technologies, direction-finding systems are facing increasingly higher demands for high precision, wide frequency coverage, large dynamic range, and real-time performance.
    Purpose
    To address these developmental needs of direction-finding systems, this paper aims to design an ultra-wideband array direction-finding system. The objectives include achieving key specifications such as a frequency range of 20 MHz to 40 GHz, a maximum instantaneous bandwidth of 1 GHz, and a direction-finding accuracy better than 5 degrees across the entire frequency band, adapting to wide-range usage scenarios in communication, radar, and other fields.
    Methods
    The ultra-wideband array direction-finding system employs a spatial spectrum direction-finding mechanism. This is realized through the detailed design and implementation of hardware components, including a multi-channel direction-finding receiver and a multi-layer antenna array, along with software implementation based on spatial spectrum direction-finding algorithms.
    Results
    The designed ultra-wideband array direction-finding system achieves an ultra-wide frequency range of 20 MHz to 40 GHz, supports direction-finding tasks with a maximum instantaneous bandwidth of 1 GHz, delivers a direction-finding accuracy better than 3 degrees across the entire band, and possesses the capability to handle three or more same-frequency signals simultaneously.
    Conclusions
    The ultra-wideband array direction-finding system significantly enhances core performance parameters such as frequency range, instantaneous bandwidth, and direction-finding accuracy. Systems with similar architectures have been successfully deployed in multiple large-scale projects, demonstrating their feasibility and scalability through practical applications.
  • loading
  • [1]
    Chen J, et al. Wideband DOA estimation based on deep learning for hybrid array systems[J]. IEEE Transactions on Signal Processing, 2022.
    [2]
    何昌见, 崔元成, 李司. 多元阵列天线测向技术研究[J]. 信息技术与信息化, 2022(4): 138-141 doi: 10.3969/j.issn.1672-9528.2022.04.034

    He Changjian, Cui Yuancheng, Li Si. Research on direction finding technology for multi-element array antennas[J]. Information Technology & Informatization, 2022(4): 138-141 doi: 10.3969/j.issn.1672-9528.2022.04.034
    [3]
    崔宏, 马杰. 不同阵列布局的空间谱测向方法的抗多径性能研究[J]. 无线电工程, 2023, 53(12): 2765-2770 doi: 10.3969/j.issn.1003-3106.2023.12.005

    Cui Hong, Ma Jie. Study on anti-multipath performance of spatial spectrum based direction-finding technique with different array pattern[J]. Radio Engineering, 2023, 53(12): 2765-2770 doi: 10.3969/j.issn.1003-3106.2023.12.005
    [4]
    段洪涛, 吕冰. 空间谱测向算法综述[J]. 中国无线电, 2021(12): 31-32 doi: 10.3969/j.issn.1672-7797.2021.12.030

    Duan Hongtao, Lv Bing. Overview of spatial spectrum direction finding algorithm[J]. China Radio, 2021(12): 31-32 doi: 10.3969/j.issn.1672-7797.2021.12.030
    [5]
    王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004: 122-136

    Wang Yongliang, Chen Hui, Peng Yingning, et al. Theory and algorithms of spatial spectrum estimation[M]. Beijing: Tsinghua University Press, 2004: 122-136
    [6]
    Tsui J, Cheng Chihao. 宽带数字接收机技术[M]. 张伟, 刘洪亮, 卢俊道, 等, 译. 3版. 北京: 电子工业出版社, 2021: 9-25

    Tsui J, Cheng Chihao. Digital techniques for wideband receivers[M]. Zhang Wei, Liu Hongliang, Lu Jundao, et al, trans. 3rd ed. Beijing: Publishing House of Electronics Industry, 2021: 9-25
    [7]
    Collins T F, Getz R, Pu Di, et al. Software-defined radio for engineers[M]. Norwood: Artech House, 2018: 95-122.
    [8]
    徐友根, 刘志文. 多极化矢量天线阵列[M]. 北京: 国防工业出版社, 2025: 88-103

    Xu Yougen, Liu Zhiwen. Diversely polarized vector-antenna arrays[M]. Beijing: National Defense Industry Press, 2025: 88-103
    [9]
    Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280. doi: 10.1109/TAP.1986.1143830
    [10]
    Krim H, Viberg M. Two decades of array signal processing research: the parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94. doi: 10.1109/79.526899
    [11]
    Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984-995. doi: 10.1109/29.32276
    [12]
    Zhang Y, et al. A covariance matrix reconstruction approach for wideband direction finding[J]. Signal Processing, 2021.
    [13]
    Chen J, et al. Deep learning for direction of arrival estimation: a review and new perspectives[J]. IEEE Access, 8: 194300-194316.
    [14]
    Tropp J A, et al. Compressed sensing for DOA estimation[J]. IEEE Signal Processing Magazine, 2018, 35(2): 124-136.
    [15]
    李鹏, 等. 空间谱测向在雷达侦察中的应用[J]. 电子对抗技术, 2010, 25(3): 45-49

    Li Peng, et al. Spatial spectrum direction finding in radar reconnaissance[J]. Electronic Countermeasures, 2010, 25(3): 45-49
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (30) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return