| Citation: | Zhang Shuqing, Li Xiaoran, Qiu Jie, et al. Impact of ion collisions on backscattering competition under the Langdon effect[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250148 |
| [1] |
McCrory R L, Meyerhofer D D, Betti R, et al. Progress in direct-drive inertial confinement fusion[J]. Physics of Plasmas, 2008, 15: 055503. doi: 10.1063/1.2837048
|
| [2] |
Craxton R S, Anderson K S, Boehly T R, et al. Direct-drive inertial confinement fusion: a review[J]. Physics of Plasmas, 2015, 22: 110501. doi: 10.1063/1.4934714
|
| [3] |
Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
|
| [4] |
Landen O L, Benedetti R, Bleuel D, et al. Progress in the indirect-drive national ignition campaign[J]. Plasma Physics and Controlled Fusion, 2012, 54: 124026. doi: 10.1088/0741-3335/54/12/124026
|
| [5] |
He X T, Li J W, Fan Z F, et al. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion[J]. Physics of Plasmas, 2016, 23: 082706. doi: 10.1063/1.4960973
|
| [6] |
Tabak M, Clark D S, Hatchett S P, et al. Review of progress in fast ignition[J]. Physics of Plasmas, 2005, 12: 057305. doi: 10.1063/1.1871246
|
| [7] |
Zhang F, Cai H B, Zhou W M, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 2020, 16(7): 810-814. doi: 10.1038/s41567-020-0878-9
|
| [8] |
Zhang J, Wang W M, Yang X H, et al. Double-cone ignition scheme for inertial confinement fusion[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 378: 20200015. doi: 10.1098/rsta.2020.0015
|
| [9] |
Kritcher A L, Zylstra A B, Weber C R, et al. Design of the first fusion experiment to achieve target energy gain G> 1[J]. Physical Review E, 2024, 109: 025204. doi: 10.1103/PhysRevE.109.025204
|
| [10] |
White R, Kaw P, Pesme D, et al. Absolute parametric instabilities in inhomogeneous plasmas[J]. Nuclear Fusion, 1974, 14(1): 45-51. doi: 10.1088/0029-5515/14/1/007
|
| [11] |
Forslund D W, Kindel J M, Lindman E L. Theory of stimulated scattering processes in laser-irradiated plasmas[J]. Physics of Fluids, 1975, 18(8): 1002-1016. doi: 10.1063/1.861248
|
| [12] |
Langdon A B. Nonlinear inverse bremsstrahlung and heated-electron distributions[J]. Physical Revoew Letters, 1980, 44(9): 575-579. doi: 10.1103/PhysRevLett.44.575
|
| [13] |
Hinkel D E, Rosen M D, Williams E A, et al. Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility[J]. Physics of Plasmas, 2011, 18: 056312. doi: 10.1063/1.3577836
|
| [14] |
Turnbull D, Colaïtis A, Hansen A M, et al. Impact of the Langdon effect on crossed-beam energy transfer[J]. Nature Physics, 2020, 16(2): 181-185. doi: 10.1038/s41567-019-0725-z
|
| [15] |
Hao Liang, Qiu Jie, Huo Wenyi. Generation of high intensity speckles in overlapping laser beams[J]. Matter and Radiation at Extremes, 2023, 8: 025903. doi: 10.1063/5.0123585
|
| [16] |
Li Xiaoran, Qiu Jie, Zhang Shuqing, et al. Investigation of the Langdon effect on the nonlinear evolution of SBS in Au plasmas[J]. Plasma Physics and Controlled Fusion, 2025, 67: 035018. doi: 10.1088/1361-6587/adb17a
|
| [17] |
Chen C, Gong T, Li Z, et al. Implementation of a large-aperture Thomson scattering system for diagnosing driven ion acoustic waves on Shenguang-III prototype laser facility[J]. Journal of Instrumentation, 2022, 17: P05017. doi: 10.1088/1748-0221/17/05/P05017
|
| [18] |
Chen Chaoxin, Gong Tao, Li Zhichao, et al. Study of the spatial growth of stimulated Brillouin scattering in a gas-filled Hohlraum via detecting the driven ion acoustic wave[J]. Matter and Radiation at Extremes, 2024, 9: 027601. doi: 10.1063/5.0173023
|
| [19] |
Qiu Jie, Hao Liang, Cao Lihua, et al. Investigation of Langdon effect on the stimulated backward Raman and Brillouin scattering[J]. Plasma Physics and Controlled Fusion, 2021, 63: 125021. doi: 10.1088/1361-6587/ac2e5b
|
| [20] |
Alaterre P, Matte J P, Lamoureux M. Ionization and recombination rates in non-Maxwellian plasmas[J]. Physical Review A, 1986, 34(2): 1578-1581. doi: 10.1103/PhysRevA.34.1578
|
| [21] |
Liu Z, Weng S M, Ma H H, et al. Revisit of electron temperature effect on stimulated Brillouin scattering in homogenous plasma[J]. Physics of Plasmas, 2024, 31: 062101. doi: 10.1063/5.0199533
|
| [22] |
Hao L, Liu Z J, Hu X Y, et al. Competition between the stimulated Raman and Brillouin scattering under the strong damping condition[J]. Laser and Particle Beams, 2013, 31(2): 203-209. doi: 10.1017/S0263034613000074
|
| [23] |
Tang C L. Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process[J]. Journal of Applied Physics, 1966, 37(8): 2945-2955. doi: 10.1063/1.1703144
|
| [24] |
Hao Liang, Zhao Yiqing, Yang Dong, et al. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code[J]. Physics of Plasmas, 2014, 21: 072705. doi: 10.1063/1.4890019
|