Turn off MathJax
Article Contents
Huang Jiawei, Zhang Mingwen, Liu Kunlun, et al. Investigation on interference effects of LFM signals on QPSK communication systems based on SDR[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250149
Citation: Huang Jiawei, Zhang Mingwen, Liu Kunlun, et al. Investigation on interference effects of LFM signals on QPSK communication systems based on SDR[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250149

Investigation on interference effects of LFM signals on QPSK communication systems based on SDR

doi: 10.11884/HPLPB202537.250149
  • Received Date: 2025-05-22
  • Accepted Date: 2025-08-12
  • Rev Recd Date: 2022-08-26
  • Available Online: 2025-09-11
  • Background
    Unintended spectral leakage from high-power linear frequency-modulated (LFM) radar can seriously degrade adjacent QPSK communication links.
    Purpose
    To clarify the effects of key LFM waveform parameters on interference mechanisms and to describe their governing patterns,
    Methods
    this study develops a closed-loop injection platform based on software-defined radio (SDR) to inject synthesized LFM waveforms into a QPSK receiver. Error vector magnitude (EVM) serves as the performance metric, while pulse width, pulse period, and chirp bandwidth are varied systematically under fixed duty-cycle constraints.
    Results
    Results indicate that increasing the duty cycle significantly raises the EVM value, although its growth moderates beyond a 30% duty cycle. Under constant duty cycles, pulse-period variations show negligible influence on EVM. As chirp bandwidth increases from 1 MHz to 3 MHz, the EVM decreases from -10.5 dB to -19.8 dB, a reduction of 9.3 dB, but remains nearly constant with further bandwidth expansion to 10 MHz.
    Conclusions
    These findings offer critical insights into radar-communication spectrum coexistence and anti-interference system design, while confirming the effectiveness of SDR-based platforms for investigating high-power microwave (HPM) interference effects.
  • loading
  • [1]
    王建明. 面向下一代战争的雷达系统与技术[J]. 现代雷达, 2017, 39(12): 1-11

    Wang Jianming. Radar systems and radar technologies for next generation of warfare[J]. Modern Radar, 2017, 39(12): 1-11
    [2]
    王朗, 雷方燕, 胡进光. HPM短脉冲雷达发射信号的重构与仿真[J]. 强激光与粒子束, 2019, 31: 063002 doi: 10.11884/HPLPB201931.190024

    Wang Lang, Lei Fangyan, Hu Jinguang. Reconstruction and simulation of HPM short pulse radar transmitting signal[J]. High Power Laser and Particle Beams, 2019, 31: 063002 doi: 10.11884/HPLPB201931.190024
    [3]
    翟畅, 方进勇, 吴江牛, 等. 基于新型高功率微波的雷达探测技术研究[J]. 微波学报, 2024, 40(1): 39-43

    Zhai Chang, Fang Jinyong, Wu Jiangniu, et al. Research on radar detection technology based on new high-power microwave[J]. Journal of Microwaves, 2024, 40(1): 39-43
    [4]
    Radasky W A, Hoad R. Recent developments in high power EM (HPEM) standards with emphasis on high altitude electromagnetic pulse (HEMP) and intentional electromagnetic interference (IEMI)[J]. IEEE Letters on Electromagnetic Compatibility Practice and Applications, 2020, 2(3): 62-66. doi: 10.1109/LEMCPA.2020.3009236
    [5]
    赵敏, 陈亚洲, 周星, 等. 无人机机载天线高功率微波耦合响应研究[J]. 强激光与粒子束, 2024, 36: 033006 doi: 10.11884/HPLPB202436.230215

    Zhao Min, Chen Yazhou, Zhou Xing, et al. Coupling response of unmanned aerial vehicle antennas under high-power microwave radiation[J]. High Power Laser and Particle Beams, 2024, 36: 033006 doi: 10.11884/HPLPB202436.230215
    [6]
    Mansson D, Thottappillil R, Backstrom M, et al. Vulnerability of European rail traffic management system to radiated intentional EMI[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(1): 101-109. doi: 10.1109/TEMC.2007.915281
    [7]
    Radasky W A, Baum C E, Wik M W. Introduction to the special issue on high-power electromagnetics (HPEM) and intentional electromagnetic interference (IEMI)[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(3): 314-321. doi: 10.1109/TEMC.2004.831899
    [8]
    汪海洋. 高功率微波效应机理理论与实验研究[D]. 成都: 电子科技大学, 2010: 12-15.
    [9]
    Wang H, Johnson J T, Baker C J. Spectrum sharing between communications and ATC radar systems[J]. IET Radar Sonar Navig, 2017, 11(6): 994-1001. doi: 10.1049/iet-rsn.2016.0312
    [10]
    Ali A, Chimeno M F, Azpúrua M A. Resilience of QPSK radio links under narrowband and broadband electromagnetic interferences[J]. IEEE Open Journal of the Communications Society, 2024, 5: 2391-2400. doi: 10.1109/OJCOMS.2024.3387339
    [11]
    Mansson D, Thottappillil R, Nilsson T, et al. Susceptibility of civilian GPS receivers to electromagnetic radiation[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(2): 434-437. doi: 10.1109/TEMC.2008.921015
    [12]
    Dubois T, Laurin J J, Raoult J, et al. Effect of low and high power continuous wave electromagnetic interference on a microwave oscillator system: from VCO to PLL to QPSK receiver[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(2): 286-293. doi: 10.1109/TEMC.2013.2280670
    [13]
    Bayram Y, Volakis J L, Myoung S K, et al. High-power EMI on RF amplifier and digital modulation schemes[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(4): 849-860. doi: 10.1109/TEMC.2008.2004600
    [14]
    韩曹政, 王武斌, 赵伟, 等. 北斗/GPS导航系统抗高功率微波防护设计[J]. 强激光与粒子束, 2024, 36: 123001 doi: 10.11884/HPLPB202436.240219

    Han Caozheng, Wang Wubin, Zhao Wei, et al. Protection design of BDS/GPS to resist high power microwave[J]. High Power Laser and Particle Beams, 2024, 36: 123001 doi: 10.11884/HPLPB202436.240219
    [15]
    胡明, 陈圣贤, 李永龙, 等. 重频超宽带电磁脉冲对GPS导航接收机的效应研究[J]. 强激光与粒子束, 2024, 36: 033011 doi: 10.11884/HPLPB202436.230324

    Hu Ming, Chen Shengxian, Li Yonglong, et al. Influence of repeated frequency UWB electromagnetic pulse on GPS navigation receiver[J]. High Power Laser and Particle Beams, 2024, 36: 033011 doi: 10.11884/HPLPB202436.230324
    [16]
    魏光辉, 赵凯, 任仕召. 通信电台电磁辐射2阶互调低频阻塞效应与作用机理[J]. 电子与信息学报, 2020, 42(8): 2059-2064 doi: 10.11999/JEIT190574

    Wei Guanghui, Zhao Kai, Ren Shizhao. Second-order intermodulation low frequency blocking effect and mechanism for communication radio under electromagnetic radiation[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2059-2064 doi: 10.11999/JEIT190574
    [17]
    李伟, 魏光辉, 潘晓东, 等. 典型通信装备带内双频连续波电磁辐射效应预测方法[J]. 系统工程与电子技术, 2016, 38(11): 2474-2480 doi: 10.3969/j.issn.1001-506X.2016.11.04

    Li Wei, Wei Guanghui, Pan Xiaodong, et al. Electromagnetic radiation effects forecasting method about in-band dual-frequency continuous wave for typical communication equipment[J]. Systems Engineering and Electronics, 2016, 38(11): 2474-2480 doi: 10.3969/j.issn.1001-506X.2016.11.04
    [18]
    魏光辉, 耿利飞, 潘晓东. 通信电台电磁辐射效应机理[J]. 高电压技术, 2014, 40(9): 2685-2692

    Wei Guanghui, Geng Lifei, Pan Xiaodong. Mechanism of electromagnetic radiation effects for communication equipment[J]. High Voltage Engineering, 2014, 40(9): 2685-2692
    [19]
    Cheng Shiyu, Pahlavan K, Wei Haowen, et al. A study of interference analysis between mmWave radars and IEEE 802.11AD at 60 GHz bands[J]. International Journal of Wireless Information Networks, 2022, 29(3): 222-231. doi: 10.1007/s10776-022-00564-9
    [20]
    Li Hui, Zhao Yongbo, Cheng Zengfei, et al. Correlated LFM waveform set design for MIMO radar transmit beampattern[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3): 329-333. doi: 10.1109/LGRS.2016.2639826
    [21]
    Zhou Feng, Ji Rui, Sun Jinglu, et al. Analysis on the definition consistency problem of EVM measurement and its solution[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(2): 528-532. doi: 10.1109/TIM.2019.2901561
    [22]
    Pajares J, López-Paredes A. An extension of the EVM analysis for project monitoring: the cost control index and the schedule control index[J]. International Journal of Project Management, 2011, 29(5): 615-621. doi: 10.1016/j.ijproman.2010.04.005
    [23]
    Zhang Mingwen, Ma Chunguang, Huang Jiawei, et al. Investigating the jamming effect of HPM with different frequencies on SDR[J]. Microwave and Optical Technology Letters, 2024, 66(9): e34326. doi: 10.1002/mop.34326
    [24]
    Shaw J A. Radiometry and the Friis transmission equation[J]. American Journal of Physics, 2013, 81(1): 33-37. doi: 10.1119/1.4755780
    [25]
    Zhang Mingwen, Ma Chunguang, Huang Jiawei, et al. Investigating dual-frequency HPM interference effect on communication system: insights from LNA to SDR[J]. IEEE Access, 2024, 12: 173410-173417. doi: 10.1109/ACCESS.2024.3501578
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (22) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return