Citation: | Song Yanjun, Lv Cheng, Zhang Jia, et al. A novel metamaterial absorber based on double magnetic media and mortise structure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250151 |
[1] |
徐锐敏, 唐璞, 薛正辉, 等. 微波技术基础[M]. 北京: 科学出版社, 2009
Xu Ruimin, Tang Pu, Xue Zhenghui, et al. Fundamentals of microwave technology[M]. Beijing: Science Press, 2009
|
[2] |
Li Changzhi, Peng Zhengyu, Huang T Y, et al. A review on recent progress of portable short-range noncontact microwave radar systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1692-1706. doi: 10.1109/TMTT.2017.2650911
|
[3] |
Skolnik M. Role of radar in microwaves[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 625-632. doi: 10.1109/22.989947
|
[4] |
Anderson D A, Sapiro R E, Raithel G. An atomic receiver for AM and FM radio communication[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 2455-2462. doi: 10.1109/TAP.2020.2987112
|
[5] |
Jones D A, Lelyveld T P, Mavrofidis S D, et al. Microwave heating applications in environmental engineering—a review[J]. Resources, Conservation and Recycling, 2002, 34(2): 75-90. doi: 10.1016/S0921-3449(01)00088-X
|
[6] |
Warwick J W, Pearce J B, Evans D R, et al. Planetary radio astronomy observations from voyager 1 near Saturn[J]. Science, 1981, 212(4491): 239-243. doi: 10.1126/science.212.4491.239
|
[7] |
李希, 王东俊, 张袁, 等. 超宽带薄型频率选择表面吸波体设计[J]. 强激光与粒子束, 2024, 36:063001 doi: 10.11884/HPLPB202436.230443
Li Xi, Wang Dongjun, Zhang Yuan, et al. Design of an ultra-wideband thin frequency selective surface absorber[J]. High Power Laser and Particle Beams, 2024, 36: 063001 doi: 10.11884/HPLPB202436.230443
|
[8] |
Sambhav S, Ghosh J. Low profile polarization-insensitive wideband rasorber with in-band transmission[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32: e23444.
|
[9] |
Liao Kun, Liu Shaobin, Shao Xianxian, et al. An ultra-wideband dual-band hybrid frequency-selective rasorber[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32: e23197.
|
[10] |
Cheng Yongzhi, He Bo, Zhao Jingcheng, et al. Ultra-thin low-frequency broadband microwave absorber based on magnetic medium and metamaterial[J]. Journal of Electronic Materials, 2017, 46(2): 1293-1299. doi: 10.1007/s11664-016-5115-z
|
[11] |
Wang Zhenxu, Wang Jiafu, Han Yajuan, et al. Wideband absorption at low microwave frequencies assisted by magnetic squeezing in metamaterials[J]. Frontiers in Physics, 2020, 8: 595642. doi: 10.3389/fphy.2020.595642
|
[12] |
Zhang Zilong, Zhang Lei, Chen Xiqiao, et al. Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band[J]. Journal of Magnetism and Magnetic Materials, 2020, 497: 166075. doi: 10.1016/j.jmmm.2019.166075
|
[13] |
Ni Xiaomin, Zheng Zhong, Xiao Xiukun, et al. Silica-coated iron nanoparticles: shape-controlled synthesis, magnetism and microwave absorption properties[J]. Materials Chemistry and Physics, 2010, 120(1): 206-212. doi: 10.1016/j.matchemphys.2009.10.047
|
[14] |
Wei Guoke, Wang Tao, Zhang Hang, et al. Enhanced microwave absorption of barium cobalt hexaferrite composite with improved bandwidth via c-plane alignment[J]. Journal of Magnetism and Magnetic Materials, 2019, 471: 267-273. doi: 10.1016/j.jmmm.2018.09.063
|
[15] |
Huang Wanqiao, Zhu Zhenghou. Broadband metamaterial absorbers based on magnetic composites[J]. Journal of Magnetism and Magnetic Materials, 2023, 576: 170792. doi: 10.1016/j.jmmm.2023.170792
|