Turn off MathJax
Article Contents
Zhang Jinhao, Zhao Fengting, Ran Ruibing, et al. Quantum low-perturbation electromagnetic environment testing technology[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250153
Citation: Zhang Jinhao, Zhao Fengting, Ran Ruibing, et al. Quantum low-perturbation electromagnetic environment testing technology[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250153

Quantum low-perturbation electromagnetic environment testing technology

doi: 10.11884/HPLPB202537.250153
  • Received Date: 2025-05-26
  • Accepted Date: 2025-08-19
  • Rev Recd Date: 2025-08-27
  • Available Online: 2025-09-08
  • Background
    In complex electromagnetic environments, electronic devices face risks of strong electromagnetic interference, performance degradation and even damage. Accurate acquisition of internal electromagnetic field distribution is a core prerequisite for analyzing field coupling mechanisms, revealing effect principles and evaluating system safety. Traditional metal electric field probes, due to large size and significant disturbance to the measured field, fail to meet fine measurement needs; electro-optic crystal technology, though with low-disturbance advantage, lacks sufficient sensitivity and frequency selectivity in the GHz band. Rydberg atom-based quantum microwave sensing technology, featuring self-calibration, SI unit traceability and high sensitivity, provides a new solution to the above problems.
    Purpose
    To address the defects of traditional measurement technologies, verify the low-disturbance property of quantum microwave sensing technology, establish an accurate method for measuring internal electric fields of devices, realize high-resolution electromagnetic field distribution mapping, and provide technical support for the analysis and evaluation of complex electromagnetic environment effects.
    Methods
    The FDTD algorithm was used to compare field disturbance differences between metal probes and Rydberg atomic vapor cells; an experimental system centered on a cesium atomic vapor cell was built, combining electromagnetically induced transparency (EIT) spectroscopy and atomic superheterodyne technology. 45 measurement points with 2cm intervals were set in a square metal shell-simulated device to complete electric field measurement and data processing.
    Results
    This technology caused minimal disturbance to the measured field, with measurement resolution reaching the millimeter level (<2 mm); in the simulated device, the maximum field intensity was 14.62 mV/m and the minimum was 1.66 mV/m. It had better frequency selectivity than electro-optic crystal technology, and low-field measurement could effectively reduce device damage risks.
    Conclusions
    Quantum microwave sensing technology can make up for the shortcomings of traditional technologies. Although high-field real-time monitoring requires combining with spectrum matching and its instantaneous bandwidth is narrow, its engineering application feasibility has been verified. Future research can focus on developing simplified measurement schemes for high-field scenarios.
  • loading
  • [1]
    毋召锋, 徐延林, 刘培国, 等. 电磁防护技术发展综述与展望[J]. 强激光与粒子束, 2024, 36: 043001 doi: 10.11884/HPLPB202436.230375

    Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. Review and prospect of electromagnetic protection technology development[J]. High Power Laser and Particle Beams, 2024, 36: 043001 doi: 10.11884/HPLPB202436.230375
    [2]
    郑浩月, 贺宇, 何小东, 等. 电控单元强电磁安全威胁分析及电源防护研究[J]. 强激光与粒子束, 2020, 32: 073003 doi: 10.11884/HPLPB202032.200092

    Zheng Haoyue, He Yu, He Xiaodong, et al. Analysis of safety threat from high electromagnetic pulses and power protection research of vehicle electronic control unit[J]. High Power Laser and Particle Beams, 2020, 32: 073003 doi: 10.11884/HPLPB202032.200092
    [3]
    Li Mei, Wei Guanghui. A review of quantitative evaluation of electromagnetic environmental effects: research progress and trend analysis[J]. Sensors, 2023, 23: 4257. doi: 10.3390/s23094257
    [4]
    张金颢, 周恒, 张守龙, 等. 基于仿真及神经网络的大型电磁脉冲模拟器近区场计算[J]. 电子学报, 2023, 51(3): 712-719 doi: 10.12263/DZXB.20211137

    Zhang Jinhao, Zhou Heng, Zhang Shoulong, et al. Calculation of near-field of large-scale electromagnetic pulse simulator based on simulation and neural network[J]. Acta Electronica Sinica, 2023, 51(3): 712-719 doi: 10.12263/DZXB.20211137
    [5]
    叶志红, 石艳超, 周健健. 电子设备贯通导线的电磁耦合时域分析算法[J]. 系统工程与电子技术, 2020, 42(8): 1673-1678 doi: 10.3969/j.issn.1001-506X.2020.08.05

    Ye Zhihong, Shi Yanchao, Zhou Jianjian. Time domain analysis algorithm of electromagnetic coupling of penetrated wire connecting to electronic device[J]. Systems Engineering and Electronics, 2020, 42(8): 1673-1678 doi: 10.3969/j.issn.1001-506X.2020.08.05
    [6]
    胡文文. 电子设备的电磁脉冲耦合特性研究[D]. 合肥: 合肥工业大学, 2020

    Hu Wenwen. Research on the coupling characteristics of electromagnetic pulse in electronic equipment[D]. Hefei: Hefei University of Technology, 2020
    [7]
    张国宾. 强磁场对典型电子器件影响机理的研究[D]. 兰州: 兰州大学, 2011

    Zhang Guobin. Investigation of the influence of intense magnetic field on electric devices[D]. Lanzhou: Lanzhou University, 2011
    [8]
    张存瑞, 米玉洁, 王喆, 等. 强电磁脉冲对武器装备电子系统毁伤效应分析及电磁防护材料技术[J]. 应用物理, 2022, 12(5): 304-310 doi: 10.12677/APP.2022.125035

    Zhang Cunrui, Mi Yujie, Wang Zhe, et al. Damage effect analysis of strong electromagnetic pulse on the electronic system of weapon equipment and the technology of electromagnetic protection materials[J]. Applied Physics, 2022, 12(5): 304-310 doi: 10.12677/APP.2022.125035
    [9]
    景明勇. 基于里德堡原子的微波超外差精密测量研究[D]. 太原: 山西大学, 2020

    Jing Mingyong. Microwave precision measurement based on Rydberg-atom superhet[D]. Taiyuan: Shanxi University, 2020
    [10]
    刘钊. 铌酸锂集成光学电场传感器关键技术研究[D]. 成都: 电子科技大学, 2023

    Liu Zhao. Key technology research of lithium niobate integrated optical electric field sensor[D]. Chengdu: University of Electronic Science and Technology of China, 2023
    [11]
    Meyer D H, Castillo Z A, Cox K C, et al. Assessment of Rydberg atoms for wideband electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53: 034001. doi: 10.1088/1361-6455/ab6051
    [12]
    Hrvoic I, Hollyer G M, Eng P. Brief review of quantum magnetometers[R]. Richmond Hill, Canada: GEM Systems Technical Papers, 2005.
    [13]
    Hinkley N, Sherman J A, Phillips N B, et al. An atomic clock with 10−18 instability[J]. Science, 2013, 341(6151): 1215-1218. doi: 10.1126/science.1240420
    [14]
    Ludlow A D, Boyd M M, Ye Jun, et al. Optical atomic clocks[J]. Reviews of Modern Physics, 2015, 87(2): 637-701. doi: 10.1103/RevModPhys.87.637
    [15]
    Sedlacek J A, Schwettmann A, Kübler H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 2012, 8(11): 819-824. doi: 10.1038/nphys2423
    [16]
    Piotrowicz M J, MacCormick C, Kowalczyk A, et al. Measurement of the electric dipole moments for transitions to rubidium Rydberg states via Autler–Townes splitting[J]. New Journal of Physics, 2011, 13: 093012. doi: 10.1088/1367-2630/13/9/093012
    [17]
    Mohapatra A K, Bason M G, Butscher B, et al. A giant electro-optic effect using polarizable dark states[J]. Nature Physics, 2008, 4(11): 890-894. doi: 10.1038/nphys1091
    [18]
    Jau Y Y, Carter T. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz[J]. Physical Review Applied, 2020, 13: 054034. doi: 10.1103/PhysRevApplied.13.054034
    [19]
    Wade C G, Šibalić N, de Melo N R, et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature Photonics, 2017, 11(1): 40-43. doi: 10.1038/nphoton.2016.214
    [20]
    Li Danyang, Bai Zhengyang, Zuo Xiaoliang, et al. Room temperature single-photon terahertz detection with thermal Rydberg atoms[J]. Applied Physics Reviews, 2024, 11: 041420. doi: 10.1063/5.0219879
    [21]
    Liu Xiaohong, Liao Kaiyu, Zhang Zuanxian, et al. Continuous-frequency microwave heterodyne detection in an atomic vapor cell[J]. Physical Review Applied, 2022, 18: 054003. doi: 10.1103/PhysRevApplied.18.054003
    [22]
    Holloway C L, Gordon J A, Simons M T, et al. Atom-based RF field probe: from self-calibrated measurements to sub-wavelength imaging[C]//2015 IEEE 15th International Conference on Nanotechnology. 2015: 789-791.
    [23]
    Anderson D A, Sapiro R E, Raithel G. A self-calibrated SI-traceable Rydberg atom-based radio frequency electric field probe and measurement instrument[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5931-5941. doi: 10.1109/TAP.2021.3060540
    [24]
    Jing Mingyong, Hu Ying, Ma Jie, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 2020, 16(9): 911-915. doi: 10.1038/s41567-020-0918-5
    [25]
    Paradis E, Raithel G, Anderson D A. Atomic measurements of high-intensity VHF-band radio-frequency fields with a Rydberg vapor-cell detector[J]. Physical Review A, 2019, 100: 013420. doi: 10.1103/PhysRevA.100.013420
    [26]
    贺青, 李栋, 谷立, 等. 基于里德堡原子的无线电技术研究进展[J]. 强激光与粒子束, 2024, 36: 079001 doi: 10.11884/HPLPB202436.240061

    He Qing, Li Dong, Gu Li, et al. Research progress in radio technology based on Rydberg atoms[J]. High Power Laser and Particle Beams, 2024, 36: 079001 doi: 10.11884/HPLPB202436.240061
    [27]
    Holloway C L, Simons M T, Gordon J A, et al. Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor[J]. Journal of Applied Physics, 2017, 121: 233106. doi: 10.1063/1.4984201
    [28]
    Yan Yang, Yuan Jinpeng, Zhang Linjie, et al. Three-dimensional location system based on an L-shaped array of Rydberg atomic receivers[J]. Optics Letters, 2023, 48(15): 3945-3948. doi: 10.1364/OL.496057
    [29]
    Mao Ruiqi, Lin Yi, Fu Yunqi, et al. Digital beamforming and receiving array research based on Rydberg field probes[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(2): 2025-2029. doi: 10.1109/TAP.2023.3327812
    [30]
    Robinson A K, Prajapati N, Senic D, et al. Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor[J]. Applied Physics Letters, 2021, 118: 114001. doi: 10.1063/5.0045601
    [31]
    Kumar S, Fan Haoquan, Kübler H, et al. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells[J]. Optics Express, 2017, 25(8): 8625-8637. doi: 10.1364/OE.25.008625
    [32]
    Wu Bo, Liao Dunwei, Sang Di, et al. Enhancing sensitivity of an atomic microwave receiver via a Fabry-Perot cavity[J]. IEEE Transactions on Antennas and Propagation, 2025, 73(2): 863-872. doi: 10.1109/TAP.2024.3480459
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article views (28) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return