Turn off MathJax
Article Contents
Peng Guoliang, Sun Huayang, Li Xiazhi, et al. Engineering computational model for high-altitude atmospheric X-ray ionization[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250158
Citation: Peng Guoliang, Sun Huayang, Li Xiazhi, et al. Engineering computational model for high-altitude atmospheric X-ray ionization[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250158

Engineering computational model for high-altitude atmospheric X-ray ionization

doi: 10.11884/HPLPB202537.250158
  • Received Date: 2025-06-04
  • Accepted Date: 2025-08-12
  • Rev Recd Date: 2025-08-27
  • Available Online: 2025-09-09
  • Background
    More than 70% of the energy from a high-altitude nuclear explosion is transmitted via X-ray radiation, which serves as the primary source of atmospheric ionization. When the detonation altitude of a high-altitude nuclear explosion exceeds 80 kilometers, the absorption of X-rays by air weakens. Consequently, X-rays can propagate over a wide range and gradually dissipate their energy through the ionization of the atmosphere. The atmospheric ionization effect of X-rays causes drastic fluctuations in the electron density within the Earth's ionosphere. This, in turn, leads to significant changes in the signals of electromagnetic waves as they pass through the ionosphere, thereby exerting adverse impacts on systems such as satellites, radars, and communications. However, there are currently still problems such as slow calculation speed and incomplete model considerations in the calculation of the atmospheric ionization effect caused by high-altitude X-rays.
    Purpose
    The purpose of this paper is to propose a new engineering method for calculating the X-ray atmospheric ionization process in the high-altitude rarefied atmosphere.
    Methods
    The model accounts for the transport of high-energy electrons (generated by the interaction between X-rays and the atmosphere) in the geomagnetic field as well as the atmospheric ionization issue, and performs an averaging process on the microscopic interaction processes.
    Results
    Compared with traditional ray energy deposition models, it improves the calculation accuracy.
    Conclusions
    This model was used to analyze the influence laws of explosion altitude, latitude, and yield on the ionization density distribution. The results show that: Due to the influence of high-energy electron transport, the symmetry of the ionization density distribution is lost; The ionization density distribution is significantly enhanced in the direction passing through the explosion center and perpendicular to the magnetic field lines;The higher the explosion altitude, the greater the ionization density at high-altitude positions, while the influence caused by high-energy electron transport becomes smaller in high-altitude regions, and the ionization density at low-altitude positions decreases;The yield has a significant impact on the numerical value of the ionization density, but has a relatively small impact on the relative distribution of the ionization density.
  • loading
  • [1]
    王建国, 刘利, 牛胜利, 等. 高空核爆炸环境数值模拟[J]. 现代应用物理, 2023, 14: 010101

    Wang Jianguo, Liu Li, Niu Shengli, et al. Numerical simulations of environmental parameters of high-altitude nuclear explosion[J]. Modern Applied Physics, 2023, 14: 010101
    [2]
    彭国良, 王仲琦, 张俊杰, 等. 高空核爆炸晚期核电磁脉冲的数值模拟研究[J]. 现代应用物理, 2024, 15: 050501

    Peng Guoliang, Wang Zhongqi, Zhang Junjie, et al. Numerical simulation of late electromagnetic pulse in high-altitude nuclear explosion[J]. Modern Applied Physics, 2024, 15: 050501
    [3]
    Crain C M, Tamarkin P. A note on the cause of sudden ionization anomalies in regions remote from high-altitude nuclear bursts[J]. Journal of Geophysical Research, 1961, 66(1): 35-39. doi: 10.1029/JZ066i001p00035
    [4]
    Willard H R, Kenney J F. Ionospheric effects of high-altitude nuclear tests[J]. Journal of Geophysical Research, 1963, 68(7): 2053-2056. doi: 10.1029/JZ068i007p02053
    [5]
    Latter R, LeLevier R E. Detection of ionization effects from nuclear explosions in space[J]. Journal of Geophysical Research, 1963, 68(6): 1643-1666. doi: 10.1029/JZ068i006p01643
    [6]
    赵正予, 王翔. 空中核爆炸电离效应的数值模拟[J]. 物理学报, 2007, 56(7): 4297-4304 doi: 10.7498/aps.56.4297

    Zhao Zhengyu, Wang Xiang. Numerical simulation of the ionization effects of low-and high-altitude nuclear explosions[J]. Acta Physica Sinica, 2007, 56(7): 4297-4304 doi: 10.7498/aps.56.4297
    [7]
    陶应龙. 高空核爆炸对电离层影响的数值模拟研究[D]. 北京: 清华大学, 2010: 41-64

    Tao Yinglong. Numerical simulation of the influence on ionosphere by high-altitude nuclear explosion[D]. Beijing: Tsinghua University, 2010: 41-64
    [8]
    朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
    [9]
    欧阳建明. 高空核爆炸背景下大气的电离过程及其影响研究[D]. 长沙: 国防科技大学, 2014: 20-36

    Ouyang Jianming. The research on ionization processes and ionization effects of atmosphere by high-altitude nuclear explosions[D]. Changsha: National University of Defense Technology, 2014: 20-36
    [10]
    欧阳建明, 马燕云, 邵福球, 等. 高空核爆炸X射线电离的时空分布数值模拟[J]. 物理学报, 2012, 61: 242801 doi: 10.7498/aps.61.242801

    Ouyang Jianming, Ma Yanyun, Shao Fuqiu, et al. Numerical simulation of temporal and spatial distribution of X-ray ionization with high-altitude nuclear explosion[J]. Acta Physica Sinica, 2012, 61: 242801 doi: 10.7498/aps.61.242801
    [11]
    Zinn J, Hoerlin H, Petschek A G. The motion of bomb debris following the starfish test[C]//Proceedings of the Advanced Study Institute on Radiation Trapped in the Earth’s Magnetic Field. 1967: 671-692.
    [12]
    王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010: 4-38

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. Manual of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010: 4-38
    [13]
    Picone J M, Hedin A E, Drob D P, et al. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. Journal of Geophysical Research, 2002, 107(A12): 1468.
    [14]
    Li Xiazhi, Niu Shengli, Zhu Jinhui. X-ray induced total ionization of air[J]. IEEE Transactions on Plasma Science, 2022, 50(6): 1749-1753. doi: 10.1109/TPS.2022.3168145
    [15]
    徐荣栏, 李磊. 磁层粒子动力学[M]. 北京: 科学出版社, 2005: 16

    Xu Ronglan, Li Lei. Magnetospheric particle dynamics[M]. Beijing: Science Press, 2005: 16
    [16]
    Holland D H, Kaufman A M, O’Dell A A. Physics of high-altitude nuclear burst effects[R]. DNA-4501F, 1977: 202.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (43) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return