Turn off MathJax
Article Contents
Wang Huanyu, Duan Jingrui, Wang Zhanliang, et al. W-band folded-waveguide traveling-wave tube with dual electron beams and H-plane power combining[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250160
Citation: Wang Huanyu, Duan Jingrui, Wang Zhanliang, et al. W-band folded-waveguide traveling-wave tube with dual electron beams and H-plane power combining[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250160

W-band folded-waveguide traveling-wave tube with dual electron beams and H-plane power combining

doi: 10.11884/HPLPB202537.250160
Funds:  supported by National Natural Science Foundation of China (62471097, 62471115, 62471101); National Natural Science Foundation of Sichuan (2025ZNSFSC0537)
More Information
  • Background
    Traveling-wave tubes (TWTs) are widely applied in radar, imaging, and military systems owing to their excellent amplification characteristics. Miniaturization and integration are critical to the future of TWTs, with multi-channel slow-wave structures (SWSs) forming the foundation for their realization in high-power vacuum electronic devices.
    Purpose
    To offer design insights into multi-channel TWTs and simultaneously enhance output power, a W-band folded-waveguide TWT with dual electron beams and H-plane power combining was proposed.
    Methods
    Three-dimensional electromagnetic simulations in CST were conducted to verify the high-frequency characteristics, electric field distribution, and amplification performance of the proposed SWS, thereby confirming the validity of the design.
    Results
    Results indicate that the designed TWT achieves a transmission bandwidth of 10 GHz. With an electron beam voltage of 17.9 kV and a current of 0.35 A, the output power reaches 450 W at 94 GHz, corresponding to an efficiency of 7.18% and a gain of 23.5 dB. Moreover, with fixed beam voltage and current, the TWT delivers over 200 W output power across 91–99 GHz, with a 3 dB bandwidth of 91–98.5 GHz. The particle voltage distribution after modulation further validates the mode analysis.
    Conclusions
    These results demonstrate the feasibility of compact dual-beam power-combining structures and provide useful guidance for the design of future multi-channel TWTs.
  • loading
  • [1]
    Booske J H, Dobbs R J, Joye C D, et al. Vacuum electronic high power terahertz sources[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 54-75. doi: 10.1109/TTHZ.2011.2151610
    [2]
    Sherwin M. Terahertz power[J]. Nature, 2002, 420(6912): 131-133. doi: 10.1038/420131a
    [3]
    Himdi M, Aouial Y, Lafond O. Integrated slotted serpentine waveguide to enhance radiation properties and efficiency[J]. IEEE Access, 2022, 10: 51093-51099. doi: 10.1109/ACCESS.2022.3172952
    [4]
    Jaque Jiménez Á, Zamora G, Bonache J. Frequency-scanning leaky-wave slot antenna array based on serpentine waveguide with open stopband suppression[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(1): 344-348. doi: 10.1109/LAWP.2023.3324063
    [5]
    Rouhi K, Marosi R, Mealy T, et al. Parametric modeling of serpentine waveguide traveling wave tubes[J]. IEEE Transactions on Plasma Science, 2024, 52(4): 1247-1263. doi: 10.1109/TPS.2024.3379944
    [6]
    Cook A M, Wright E L, Nguyen K T, et al. Demonstration of a W-band traveling-wave tube power amplifier with 10-GHz bandwidth[J]. IEEE Transactions on Electron Devices, 2021, 68(5): 2492-2498. doi: 10.1109/TED.2021.3068926
    [7]
    Cai Jun, Feng Jinjun, Hu Yinfu, et al. 10 GHz bandwidth 100 watt W-band folded waveguide pulsed TWTs[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(9): 620-621. doi: 10.1109/LMWC.2014.2328891
    [8]
    Li Fei, Xiao Liu, Ma Tianjun, et al. W-Band 30W continuous wave wide band folded waveguide TWT[C]//2020 IEEE 21st International Conference on Vacuum Electronics (IVEC). 2020: 29-30.
    [9]
    Tian Yanyan, Wang Hexin, Shu Guoxiang, et al. Parallel arrangement folded double-ridge groove waveguide for high-power terahertz traveling-wave tube[J]. IEEE Transactions on Plasma Science, 2021, 49(11): 3519-3523. doi: 10.1109/TPS.2021.3118371
    [10]
    Duan Jingrui, Lu Zhigang, Gao Peng, et al. Quadruple folded groove-guide slow wave structure with power synthesis circuit for terahertz TWT[J]. IEEE Electron Device Letters, 2025, 46(2): 302-305. doi: 10.1109/LED.2024.3515646
    [11]
    Joye C D, Vlasov A N, Jaynes R, et al. Ka-band low-voltage multiple-beam mini-TWT[J]. IEEE Transactions on Electron Devices, 2023, 70(6): 2828-2833. doi: 10.1109/TED.2023.3239839
    [12]
    Eun Choi H, Choi W, Lee J, et al. Experimental investigation of a dual-beam traveling wave tube[J]. IEEE Transactions on Electron Devices, 2024, 71(7): 4336-4341. doi: 10.1109/TED.2024.3405398
    [13]
    Tian Yanyan, Yue Lingna, Xu Jin, et al. A novel slow-wave structure—folded rectangular groove waveguide for millimeter-wave TWT[J]. IEEE Transactions on Electron Devices, 2012, 59(2): 510-515. doi: 10.1109/TED.2011.2175929
    [14]
    Marosi R, Mealy T, Figotin A, et al. Three-way serpentine slow wave structures with stationary inflection point and enhanced interaction impedance[J]. IEEE Transactions on Plasma Science, 2022, 50(12): 4820-4833. doi: 10.1109/TPS.2022.3218040
    [15]
    Zhang Keqian, Li Dejie. Electromagnetic theory for microwaves and optoelectronics[M]. 2nd ed. Berlin, Heidelberg: Springer, 2008: 228-301.
    [16]
    Pierce J R. Traveling-wave tubes[M]. New York: Van Nostrand, 1950: 123-135.
    [17]
    Duan Jingrui, Lu Zhigang, Zhu Junwan, et al. A modified fold waveguide slow wave structure for W-band dual-beam TWT[J]. IEEE Transactions on Electron Devices, 2023, 70(6): 2786-2791. doi: 10.1109/TED.2023.3239459
    [18]
    Wang Huanyu, Wang Zhanliang, Liu Xing, et al. Simulation and experimental investigation on W-band back-to-back longitudinal serpentine groove slow wave structures[J]. IEEE Transactions on Electron Devices, 2025, 72(7): 3875-3880. doi: 10.1109/TED.2025.3572878
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (56) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return