Citation: | Wang Huanyu, Duan Jingrui, Wang Zhanliang, et al. W-band folded-waveguide traveling-wave tube with dual electron beams and H-plane power combining[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250160 |
[1] |
Booske J H, Dobbs R J, Joye C D, et al. Vacuum electronic high power terahertz sources[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 54-75. doi: 10.1109/TTHZ.2011.2151610
|
[2] |
Sherwin M. Terahertz power[J]. Nature, 2002, 420(6912): 131-133. doi: 10.1038/420131a
|
[3] |
Himdi M, Aouial Y, Lafond O. Integrated slotted serpentine waveguide to enhance radiation properties and efficiency[J]. IEEE Access, 2022, 10: 51093-51099. doi: 10.1109/ACCESS.2022.3172952
|
[4] |
Jaque Jiménez Á, Zamora G, Bonache J. Frequency-scanning leaky-wave slot antenna array based on serpentine waveguide with open stopband suppression[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(1): 344-348. doi: 10.1109/LAWP.2023.3324063
|
[5] |
Rouhi K, Marosi R, Mealy T, et al. Parametric modeling of serpentine waveguide traveling wave tubes[J]. IEEE Transactions on Plasma Science, 2024, 52(4): 1247-1263. doi: 10.1109/TPS.2024.3379944
|
[6] |
Cook A M, Wright E L, Nguyen K T, et al. Demonstration of a W-band traveling-wave tube power amplifier with 10-GHz bandwidth[J]. IEEE Transactions on Electron Devices, 2021, 68(5): 2492-2498. doi: 10.1109/TED.2021.3068926
|
[7] |
Cai Jun, Feng Jinjun, Hu Yinfu, et al. 10 GHz bandwidth 100 watt W-band folded waveguide pulsed TWTs[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(9): 620-621. doi: 10.1109/LMWC.2014.2328891
|
[8] |
Li Fei, Xiao Liu, Ma Tianjun, et al. W-Band 30W continuous wave wide band folded waveguide TWT[C]//2020 IEEE 21st International Conference on Vacuum Electronics (IVEC). 2020: 29-30.
|
[9] |
Tian Yanyan, Wang Hexin, Shu Guoxiang, et al. Parallel arrangement folded double-ridge groove waveguide for high-power terahertz traveling-wave tube[J]. IEEE Transactions on Plasma Science, 2021, 49(11): 3519-3523. doi: 10.1109/TPS.2021.3118371
|
[10] |
Duan Jingrui, Lu Zhigang, Gao Peng, et al. Quadruple folded groove-guide slow wave structure with power synthesis circuit for terahertz TWT[J]. IEEE Electron Device Letters, 2025, 46(2): 302-305. doi: 10.1109/LED.2024.3515646
|
[11] |
Joye C D, Vlasov A N, Jaynes R, et al. Ka-band low-voltage multiple-beam mini-TWT[J]. IEEE Transactions on Electron Devices, 2023, 70(6): 2828-2833. doi: 10.1109/TED.2023.3239839
|
[12] |
Eun Choi H, Choi W, Lee J, et al. Experimental investigation of a dual-beam traveling wave tube[J]. IEEE Transactions on Electron Devices, 2024, 71(7): 4336-4341. doi: 10.1109/TED.2024.3405398
|
[13] |
Tian Yanyan, Yue Lingna, Xu Jin, et al. A novel slow-wave structure—folded rectangular groove waveguide for millimeter-wave TWT[J]. IEEE Transactions on Electron Devices, 2012, 59(2): 510-515. doi: 10.1109/TED.2011.2175929
|
[14] |
Marosi R, Mealy T, Figotin A, et al. Three-way serpentine slow wave structures with stationary inflection point and enhanced interaction impedance[J]. IEEE Transactions on Plasma Science, 2022, 50(12): 4820-4833. doi: 10.1109/TPS.2022.3218040
|
[15] |
Zhang Keqian, Li Dejie. Electromagnetic theory for microwaves and optoelectronics[M]. 2nd ed. Berlin, Heidelberg: Springer, 2008: 228-301.
|
[16] |
Pierce J R. Traveling-wave tubes[M]. New York: Van Nostrand, 1950: 123-135.
|
[17] |
Duan Jingrui, Lu Zhigang, Zhu Junwan, et al. A modified fold waveguide slow wave structure for W-band dual-beam TWT[J]. IEEE Transactions on Electron Devices, 2023, 70(6): 2786-2791. doi: 10.1109/TED.2023.3239459
|
[18] |
Wang Huanyu, Wang Zhanliang, Liu Xing, et al. Simulation and experimental investigation on W-band back-to-back longitudinal serpentine groove slow wave structures[J]. IEEE Transactions on Electron Devices, 2025, 72(7): 3875-3880. doi: 10.1109/TED.2025.3572878
|