Citation: | Sun Mingming, Kong Fanting, Yang Juntai, et al. Effectiveness analysis of thermal design methods for a 12.5 kW Hall thruster[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250172 |
[1] |
康小录, 张岩, 刘佳, 等. 大功率霍尔电推进研究现状与关键技术[J]. 推进技术, 2019, 40(1):1-11
Kang Xiaolu, Zhang Yan, Liu Jia, et al. Research status and key technologies of high-power hall electric propulsion[J]. Journal of Propulsion Technology, 2019, 40(1): 1-11
|
[2] |
耿海, 吴辰宸, 孙新锋, 等. 高功率空间电推进技术发展研究[J]. 真空与低温, 2022, 28(1):14-25
Geng Hai, Wu Chenchen, Sun Xinfeng, et al. The high power space electric propulsion technology[J]. Vacuum and Cryogenics, 2022, 28(1): 14-25
|
[3] |
Casaregola C, Pergola P, Ruggiero A. Future scenarios for space transportation and exploration based on high power electric propulsion technologies[C]//Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2011.
|
[4] |
Andreussi T, Giannetti V, Leporini A, et al. Influence of the magnetic field configuration on the plasma flow in hall thrusters[J]. Plasma Physics and Controlled Fusion, 2018, 60: 014015. doi: 10.1088/1361-6587/aa8c4d
|
[5] |
Dorf L, Raitses Y, Fisch NJ. Effect of magnetic field profile on the anode fall in a hall-effect thruster discharge[J]. Physics of Plasmas, 2006, 13: 057104. doi: 10.1063/1.2174825
|
[6] |
Archipov A, Krochak Z, Maslennikov Y. Thermal design of the electric propulsion system components - numerical analysis and testing at Fakel[C]//Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 1998.
|
[7] |
陈笃华, 王平阳, 王尚, 等. 50kW级高功率霍尔推力器放电通道数值模拟研究[J]. 上海航天(中英文), 2021, 38(6):78-84
Chen Duhua, Wang Pingyang, Wang Shang, et al. Numerical simulation of the discharge channel of a 50 kW high-power hall thruster[J]. Aerospace Shanghai (Chinese & English), 2021, 38(6): 78-84
|
[8] |
Hani K, Thomas H, Wen S H, et al. Performance and thermal characterization of a 20 kW class long life Hall thruster[R]. IEPC-2013-136.
|
[9] |
Kamhawi H, Liu T M, Benavides G F, et al. Performance, stability, and thermal characterization of a sub-kilowatt Hall thruster[C]//Proceedings of the 36th International Electric Propulsion Conference. 2019: 1-20.
|
[10] |
Mao W, Shen Y, Hu Y L, et al. Investigation of thermal characteristics in a 1.35 kW magnetic focus type Hall thruster (HEP-100MF)[R]. IEPC-2015-214.
|
[11] |
Myers J L, Kamhaw H, Yim J, et al. Hall thruster thermal modeling and test data correlation[C]//Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference. 2016.
|
[12] |
赵震, 程佳兵, 康小录. 温度对磁屏蔽霍尔推力器磁场构型的影响研究[J]. 中国空间科学技术, 2020, 40(4):29-37
Zhao Zhen, Cheng Jiabing, Kang Xiaolu. Effect of temperature on magnetic field configuration of magnetically shielded Hall thruster[J]. Chinese Space Science and Technology, 2020, 40(4): 29-37
|
[13] |
苗鹏, 于博, 康小录, 等. 嵌套霍尔推力器的热优化策略研究[J]. 推进技术, 2024, 45:2304031
Miao Peng, Yu Bo, Kang Xiaolu, et al. An investigation of thermal optimization strategies in nested Hall thrusters[J]. Journal of Propulsion Technology, 2024, 45: 2304031
|
[14] |
刘星宇, 李鸿, 毛威, 等. 霍尔推力器能量损失系统性评价方法[J]. 推进技术, 2022, 43:200868
Liu Xingyu, Li Hong, Mao Wei, et al. Systematic evaluation method for power loss of hall thruster[J]. Journal of Propulsion Technology, 2022, 43: 200868
|
[15] |
徐凡, 王磊, 丁永杰, 等. 永磁霍尔推力器性能退化及寿命评估研究[J]. 推进技术, 2023, 44:2212024
Xu Fan, Wang Lei, Ding Yongjie, et al. Performance degradation and life assessment of permanent magnet hall thruster[J]. Journal of Propulsion Technology, 2023, 44: 2212024
|
[16] |
陈龙, 阚子晨, 杨叶慧, 等. 霍尔推力器磁屏蔽磁场设计及通道结构优化仿真研究[J]. 推进技术, 2023, 44:2208107
Chen Long, Kan Zichen, Yang Yehui, et al. Simulation study on magnetic shielding field design and channel structure optimization of hall thruster[J]. Journal of Propulsion Technology, 2023, 44: 2208107
|
[17] |
Ding Y J, Li H, Li P, et al. Effect of relative position between cathode and magnetic separatrix on the discharge characteristic of Hall thrusters[J]. Vacuum, 2018, 154: 167-173. doi: 10.1016/j.vacuum.2018.05.005
|
[18] |
Hofer R R, Johnson L K, Goebel D M, et al. Effects of internally mounted cathodes on Hall thruster plume properties[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2004-2014. doi: 10.1109/TPS.2008.2000962
|
[19] |
Goebel D, Katz I. JPL space science and technology series[M]//Goebel D M, Katz I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters. Hoboken: John Wiley & Sons, Inc. , 2008: 357-363.
|
[20] |
Sun M M, Geng H, Liu C, et al. Simulation and measurement of plume characteristics of a hall thruster with 12.5 kW[J]. Journal of Aerospace Technology and Management, 2025, 17: e1325. doi: 10.1590/jatm.v17.1373
|
[21] |
孙明明, 顾左, 郭宁, 等. 离子推力器空心阴极热特性模拟分析[J]. 强激光与粒子束, 2010, 22(5):1149-1152 doi: 10.3788/HPLPB20102205.1149
Sun Mingming, Gu Zuo, Guo Ning, et al. Thermal analysis of hollow cathodes for ion thruster[J]. High Power Laser and Particle Beams, 2010, 22(5): 1149-1152 doi: 10.3788/HPLPB20102205.1149
|
[22] |
杜林颖, 于鸿彬, 王磊. 基于K型热电偶温度传感器的测温系统研究[J]. 现代电子技术, 2019, 42(14):36-40
Du Linying, Yu Hongbin, Wang Lei. Research on temperature measurement system based on K-type thermocouple temperature sensor[J]. Modern Electronics Technique, 2019, 42(14): 36-40
|