Turn off MathJax
Article Contents
Zhang Hao, Huang Liming, Lin Hanwen, et al. Safety analysis of injector dump beam window for the electron beam test platform of S3FEL[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250179
Citation: Zhang Hao, Huang Liming, Lin Hanwen, et al. Safety analysis of injector dump beam window for the electron beam test platform of S3FEL[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250179

Safety analysis of injector dump beam window for the electron beam test platform of S3FEL

doi: 10.11884/HPLPB202537.250179
  • Received Date: 2025-06-20
  • Accepted Date: 2025-08-21
  • Rev Recd Date: 2025-08-04
  • Available Online: 2025-09-06
  • Background
    The electron beam test platform, as the pre-research project of Shenzhen Superconducting Soft X-ray Free Electron Laser (S3FEL), will be used to overcome several major key technologies in high repetition frequency free electron laser.
    Purpose
    Based on the previously proposed beam window design integrated into the beam dump, this study aims to conduct the radiation safety analysis and the thermo-structural analyses under non-ideal conditions during operation.
    Methods
    The radiation dose at the beam window was calculated and analysed using the Monte Carlo method. To evaluate the robust of BWs during operation, the thermo-structural analyses was conducted using the finite element analysis method under non-ideal situations, including beam eccentricity, beam shrinkage, and reduced cooling water flow rate.
    Results
    The results show that the radiation dose at 30 cm outside the side walls and ceiling complies with national standards, verifying the radiation safety of the scheme. Besides, the results indicate that beam eccentricity has negligible effects on the temperature, stress, and deformation of the beam window. Both beam shrinkage and reduced cooling water flow rate lead to increased temperature, stress, and deformation.
    Conclusions
    However, the standard deviation of the beam shrinkage must not fall below 10% of its original value, and the cooling water flow rate must not be lower than 0.2 m/s; Otherwise, the safe operation of the beam window would be compromised. This paper clarifies the safety operation threshold for the beam window, providing a theoretical basis for its secure operation.
  • loading
  • [1]
    Motz H. Applications of the radiation from fast electron beams[J]. Journal of Applied Physics, 1951, 22(5): 527-535. doi: 10.1063/1.1700002
    [2]
    Gonnella D, Aderhold S, Burrill A, et al. Industrialization of the nitrogen-doping preparation for SRF cavities for LCLS-II[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 883: 143-150.
    [3]
    Sinn H, Dommach M, Dickert B, et al. The SASE1 X-ray beam transport system[J]. Journal of Synchrotron Radiation, 2019, 26(3): 692-699. doi: 10.1107/S1600577519003461
    [4]
    Tono K, Nango E, Sugahara M, et al. Diverse application platform for hard X-ray diffraction in SACLA (DAPHNIS): application to serial protein crystallography using an X-ray free-electron laser[J]. Journal of Synchrotron Radiation, 2015, 22(3): 532-537. doi: 10.1107/S1600577515004464
    [5]
    余永, 李钦明, 杨家岳, 等. 大连极紫外相干光源[J]. 中国激光, 2019, 46: 0100005 doi: 10.3788/CJL201946.0100005

    Yu Yong, Li Qinming, Yang Jiayue, et al. Dalian extreme ultraviolet coherent light source[J]. Chinese Journal of Lasers, 2019, 46: 0100005 doi: 10.3788/CJL201946.0100005
    [6]
    Wang Jinwei, Liu Junnan, Jin Limin, et al. Numerical simulation of attenuation performance of the gas attenuator using argon as working medium of SHINE[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1058: 168881. doi: 10.1016/j.nima.2023.168881
    [7]
    Xu Zhongmin, Zhang Weiqing, Yang Chuan, et al. Shape optimization design of the offset mirror in FEL-1 beamline at S3FEL[J]. Scientific Reports, 2023, 13: 9653. doi: 10.1038/s41598-023-36645-9
    [8]
    张浩, 黄礼明, 赵峰, 等. 一种高重频废束桶束窗的设计及热结构分析[J]. 强激光与粒子束, 2023, 35: 034001 doi: 10.11884/HPLPB202335.220350

    Zhang Hao, Huang Liming, Zhao Feng, et al. Design and thermal structure analysis of a dump beam window for high repetition frequency[J]. High Power Laser and Particle Beams, 2023, 35: 034001 doi: 10.11884/HPLPB202335.220350
    [9]
    鄂得俊, 黄礼明, 刘昌奇, 等. 大连先进光源束流垃圾桶屏蔽设计及热工分析[J]. 强激光与粒子束, 2024, 36: 014003 doi: 10.11884/HPLPB202436.230286

    E Dejun, Huang Liming, Liu Changqi, et al. Dalian Advanced Light Source beam dump radiation shielding design and thermal analysis[J]. High Power Laser and Particle Beams, 2024, 36: 014003 doi: 10.11884/HPLPB202436.230286
    [10]
    聂小军, 刘磊, 康玲, 等. 一种废束站束窗结构设计与优化[J]. 强激光与粒子束, 2018, 30: 105105 doi: 10.11884/HPLPB201830.180057

    Nie Xiaojun, Liu Lei, Kang Ling, et al. Structure design and optimization of a dump beam window[J]. High Power Laser and Particle Beams, 2018, 30: 105105 doi: 10.11884/HPLPB201830.180057
    [11]
    Wang Haijing, Liu Weibin, Qu Huamin, et al. Thermal analysis and optimization of proton beam window for the CSNS[J]. Chinese Physics C, 2013, 37(7): 077001. doi: 10.1088/1674-1137/37/7/077001
    [12]
    张浩, 赵峰, 林涵文, 等. S3FEL束流测试平台注入段废束桶束窗设计[J]. 强激光与粒子束, 2025, 37: 054001 doi: 10.11884/HPLPB202537.240365

    Zhang Hao, Zhao Feng, Lin Hanwen, et al. Design of injector dump beam window for the electron beam test platform of S3FEL[J]. High Power Laser and Particle Beams, 2025, 37: 054001 doi: 10.11884/HPLPB202537.240365
    [13]
    姜伯承, 张满洲, 李浩虎, 等. 上海光源储存环恒流注入束流安全性模拟[J]. 强激光与粒子束, 2013, 25(4): 985-988 doi: 10.3788/HPLPB20132504.0985

    Jiang Bocheng, Zhang Manzhou, Li Haohu, et al. Top-up safety simulation of injection beam for Shanghai Synchrotron Radiation Facility storage ring[J]. High Power Laser and Particle Beams, 2013, 25(4): 985-988 doi: 10.3788/HPLPB20132504.0985
    [14]
    张刚, 敬罕涛, 朱东辉, 等. CSNS简化版实验缪子源的辐射和屏蔽设计[J]. 核技术, 2021, 44: 090501 doi: 10.11889/j.0253-3219.2021.hjs.44.090501

    Zhang Gang, Jing Hantao, Zhu Donghui, et al. Radiation and shielding design on the simplified experimental muon source at CSNS[J]. Nuclear Techniques, 2021, 44: 090501 doi: 10.11889/j.0253-3219.2021.hjs.44.090501
    [15]
    GB 18871-2002, 电离辐射防护与辐射源安全基本标准[S]

    GB 18871-2002, Basic STANDARDs for protection against ionizing radiation and for the safety of radiation sources
    [16]
    张志良, 孙越强, 李永平, 等. 基于COMSOL的星载四极质谱仪仿真分析[J]. 真空科学与技术学报, 2022, 42(7): 517-524

    Zhang Zhiliang, Sun Yueqiang, LI Yongping, et al. Simulation and analysis of spaceborne quadrupole mass spectrometer based on COMSOL[J]. Chinese Journal of Vacuum Science and Technology, 2022, 42(7): 517-524
    [17]
    郭玖元, 邓永皓, 许巍, 等. 矩形通道局部变形堵塞对流传热实验研究[J]. 核技术, 2021, 44: 050602 doi: 10.11889/j.0253-3219.2021.hjs.44.050602

    Guo Jiuyuan, Deng Yonghao, Xu Wei, et al. Experimental study on convection heat transfer in rectangular channel with partial blockage[J]. Nuclear Techniques, 2021, 44: 050602 doi: 10.11889/j.0253-3219.2021.hjs.44.050602
    [18]
    Notari L, Pasquali M, Carra F, et al. Materials adopted for particle beam windows in relevant experimental facilities[J]. Physical Review Accelerators and Beams, 2024, 27: 024801. doi: 10.1103/PhysRevAccelBeams.27.024801
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (28) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return