Volume 37 Issue 8
Jul.  2025
Turn off MathJax
Article Contents
Yao Lixiang, Huang Xianjun, Chen Hongting, et al. Advances and perspectives in artificial intelligence-empowered electromagnetic protection materials research[J]. High Power Laser and Particle Beams, 2025, 37: 089001. doi: 10.11884/HPLPB202537.250188
Citation: Yao Lixiang, Huang Xianjun, Chen Hongting, et al. Advances and perspectives in artificial intelligence-empowered electromagnetic protection materials research[J]. High Power Laser and Particle Beams, 2025, 37: 089001. doi: 10.11884/HPLPB202537.250188

Advances and perspectives in artificial intelligence-empowered electromagnetic protection materials research

doi: 10.11884/HPLPB202537.250188
  • Received Date: 2025-06-26
  • Accepted Date: 2025-07-25
  • Rev Recd Date: 2025-07-25
  • Available Online: 2025-07-25
  • Publish Date: 2025-07-26
  • Facing the urgent demand for high-performance, customized electromagnetic protection materials driven by increasingly intelligent electronic information systems, traditional research and development (R&D) models face severe limitations due to complex multi-parameter coupling, high trial-and-error costs, and difficulties in cross-scale design, hindering their ability to meet the need for efficient R&D. Artificial intelligence (AI), leveraging data-driven approaches and algorithmic optimization, offers a transformative paradigm to overcome these limitations. This paper systematically reviews AI-empowered research in electromagnetic protection materials. It begins by analyzing the key characteristics and core challenges in the R&D of these materials, highlighting the high suitability of AI for this domain. Subsequently, it illustrates representative research cases from both forward prediction and inverse design perspectives within the field. Finally, the paper identifies existing challenges concerning data availability, physical interpretability of AI models, and practical application deployment barriers. Specific considerations are proposed in three aspects: constructing specialized electromagnetic material gene databases, developing physics-informed neural networks that integrate data with physical principles, and emphasizing the need to promote domain-specific data sharing and establish standardized protocols, so as to pave the way for the intelligent development of next-generation electromagnetic protection materials.
  • loading
  • [1]
    谭志良, 胡小锋, 毕军建, 等. 电磁脉冲防护理论与技术[M]. 北京: 国防工业出版社, 2013

    Tan Zhiliang, Hu Xiaofeng, Bi Junjian, et al. Electromagnetic pulse protection theory and technology[M]. Beijing: National Defense Industry Press, 2013
    [2]
    谭志良, 李亚南, 宋培姣. 射频前端强电磁脉冲防护研究进展[J]. 北京理工大学学报, 2020, 40(3):231-242

    Tan Zhiliang, Li Yanan, Song Peijiao. Relevant research on electromagnetic pulse protection of RF front-end[J]. Transactions of Beijing Institute of Technology, 2020, 40(3): 231-242
    [3]
    毋召锋, 徐延林, 刘培国, 等. 电磁防护技术发展综述与展望[J]. 强激光与粒子束, 2024, 36:043001 doi: 10.11884/HPLPB202436.230375

    Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. Review and prospect of electromagnetic protection technology development[J]. High Power Laser and Particle Beams, 2024, 36: 043001 doi: 10.11884/HPLPB202436.230375
    [4]
    李宝毅, 赵亚娟, 王蓬, 等. 电磁防护超材料在国防领域中的应用与前景展望[J]. 电子元件与材料, 2019, 38(5):1-5

    Li Baoyi, Zhao Yajuan, Wang Peng, et al. The application and prospects of metamaterials for electromagnetic protection in defense fields[J]. Electronic Components and Materials, 2019, 38(5): 1-5
    [5]
    边永亮, 王永胜, 郭文卿, 等. 关于智能电磁防护材料及技术的研究[J]. 信息系统工程, 2022, 35(4):145-148 doi: 10.3969/j.issn.1001-2362.2022.04.037

    Bian Yongliang, Wang Yongsheng, Guo Wenqing, et al. Research on intelligent electromagnetic protection materials and technologies[J]. Information System Engineering, 2022, 35(4): 145-148 doi: 10.3969/j.issn.1001-2362.2022.04.037
    [6]
    梁圆龙, 黄贤俊, 姚理想, 等. 透明电磁屏蔽材料的研究进展[J]. 安全与电磁兼容, 2021(2):61-68,103 doi: 10.3969/j.issn.1005-9776.2021.02.012

    Liang Yuanlong, Huang Xianjun, Yao Lixiang, et al. Recent research advances on transparent electromagnetic shielding materials[J]. Safety & EMC, 2021(2): 61-68,103 doi: 10.3969/j.issn.1005-9776.2021.02.012
    [7]
    Yao Lixiang, Liang Yuanlong, Wen Kui, et al. Demonstration of tunable shielding effectiveness in GHz and THz bands for flexible graphene/ion gel/graphene film[J]. Applied Sciences, 2021, 11: 5133. doi: 10.3390/app11115133
    [8]
    Liu Shuai, Wang Sheng, Sang Min, et al. Nacre-mimetic hierarchical architecture in polyborosiloxane composites for synergistically enhanced impact resistance and ultra-efficient electromagnetic interference shielding[J]. ACS Nano, 2022, 16(11): 19067-19086. doi: 10.1021/acsnano.2c08104
    [9]
    Liang Yuanlong, Huang Xianjun, Pan Jisheng, et al. Shorted micro-waveguide array for high optical transparency and superior electromagnetic shielding in ultra-wideband frequency spectrum[J]. Advanced Materials Technologies, 2023, 8: 2201532. doi: 10.1002/admt.202201532
    [10]
    Zhang Yali, Liu An, Tian Yuanyuan, et al. Direct-ink-writing printed aerogels with dynamically reversible thermal management and tunable electromagnetic interference shielding[J]. Advanced Materials, 2025: 2505521.
    [11]
    Deng Yangui, Huang Jianguo, Ning Xiangchun. Electroless nickel, cobalt, and cobalt/nickel coatings on E-glass fabrics: towards high-performance electromagnetic interference shielding materials[J]. Journal of Alloys and Compounds, 2025, 1036: 181659. doi: 10.1016/j.jallcom.2025.181659
    [12]
    陈思琦, 李莉, 李乙, 等. 材料基因工程技术在分子筛领域中的应用[J]. 高等学校化学学报, 2021, 42(1):179-187 doi: 10.7503/cjcu20200490

    Chen Siqi, Li Li, Li Yi, et al. Applications of materials genome engineering in zeolites[J]. Chemical Journal of Chinese Universities, 2021, 42(1): 179-187 doi: 10.7503/cjcu20200490
    [13]
    孙志梅, 王冠杰, 张烜广, 等. 材料基因工程加速新材料设计与研发[J]. 北京航空航天大学学报, 2022, 48(9):1575-1588

    Sun Zhimei, Wang Guanjie, Zhang Xuanguang, et al. Novel material design and development accelerated by materials genome engineering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1575-1588
    [14]
    宿彦京, 付华栋, 白洋, 等. 中国材料基因工程研究进展[J]. 金属学报, 2020, 56(10):1313-1323 doi: 10.11900/0412.1961.2020.00199

    Su Yanjing, Fu Huadong, Bai Yang, et al. Progress in materials genome engineering in China[J]. Acta Metallurgica Sinica, 2020, 56(10): 1313-1323 doi: 10.11900/0412.1961.2020.00199
    [15]
    刘彻, 马骞, 李廉林, 等. 人工智能超材料[J]. 光学学报, 2021, 41:0823004 doi: 10.3788/AOS202141.0823004

    Liu Che, Ma Qian, Li Lianlin, et al. Artificial intelligence metamaterials[J]. Acta Optica Sinica, 2021, 41: 0823004 doi: 10.3788/AOS202141.0823004
    [16]
    葛宏义, 补雨薇, 蒋玉英, 等. 人工智能在太赫兹超材料设计与优化领域的研究进展[J]. 激光与光电子学进展, 2024, 61:2300003

    Ge Hongyi, Bu Yuwei, Jiang Yuying, et al. Advances in artificial intelligence for design and optimization of terahertz metamaterials[J]. Laser & Optoelectronics Progress, 2024, 61: 2300003
    [17]
    Tang Chengqing, Zhang Sheng, Zhang Jiapeng, et al. Silicon carbide coated carbon nanotube porous sponge with super Elasticity, low Density, high thermal Resistivity, and synergistically enhanced electromagnetic interference shielding performances[J]. Chemical Engineering Journal, 2023, 469: 144011. doi: 10.1016/j.cej.2023.144011
    [18]
    张贝, 晁敏, 李晓东, 等. 具有恶劣环境耐受性的柔性MXene-炭黑/聚酰亚胺电磁屏蔽复合薄膜的制备与性能[J]. 复合材料学报, 2025, 42(6):3110-3121

    Zhang Bei, Chao Min, Li Xiaodong, et al. Preparation and properties of flexible MXene-carbon black/polyimide electromagnetic shielding composite films with harsh environment resistance[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3110-3121
    [19]
    樊宇迪, 李达, 李尔平. 有源频率选择表面及其电磁屏蔽应用研究进展[J]. 安全与电磁兼容, 2024(5):9-21

    Fan Yudi, Li Da, Li Erping. Research advances of active frequency selective surfaces and their applications to electromagnetic shielding[J]. Safety & EMC, 2024(5): 9-21
    [20]
    Costa F, Monorchio A, Manara G. Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model[J]. IEEE Antennas and Propagation Magazine, 2012, 54(4): 35-48. doi: 10.1109/MAP.2012.6309153
    [21]
    Yang Cheng, Liu Peiguo, Huang Xianjun. A novel method of energy selective surface for adaptive HPM/EMP protection[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 112-115. doi: 10.1109/LAWP.2013.2243105
    [22]
    Zhang Jihong, Lin Mingtuan, Wu Zhaofeng, et al. Energy selective surface with power-dependent transmission coefficient for high-power microwave protection in waveguide[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2494-2502. doi: 10.1109/TAP.2019.2894274
    [23]
    Zhao Chen, Wang Chaofu, Aditya S. Power-dependent frequency-selective surface: concept, design, and experiment[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3215-3220. doi: 10.1109/TAP.2019.2900408
    [24]
    Zhou Lin, Liu Liangliang, Shen Zhongxiang. High-performance energy selective surface based on the double-resonance concept[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7658-7666. doi: 10.1109/TAP.2021.3075548
    [25]
    Zhang Jihong, Hu Ning, Wu Zhaofeng, et al. Adaptive high-impedance surface for prevention of waveguide’s high-intensity wave[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7679-7687. doi: 10.1109/TAP.2021.3070052
    [26]
    Hu Ning, Zhao Yuting, Zhang Jihong, et al. High-performance energy selective surface based on equivalent circuit design approach[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4526-4538. doi: 10.1109/TAP.2021.3137293
    [27]
    Hu Ning, Zha Song, Tian Tao, et al. Design and analysis of multiband energy selective surface based on semiconductors[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(4): 1076-1085. doi: 10.1109/TEMC.2022.3166156
    [28]
    Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. An ultra-broadband energy selective surface design method: from filter circuits to metamaterials[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(7): 5865-5873. doi: 10.1109/TAP.2023.3276447
    [29]
    Liu Peiguo, Liu Hanqing. Electromagnetic protection strategy using adaptive energy selective mechanism[J]. The Innovation, 2023, 4: 100513.
    [30]
    Tian Tao, Huang Xianjun, Xu Yanlin, et al. A wideband energy selective surface with quasi-elliptic bandpass response and high-power microwave shielding[J]. IEEE Transactions on Electromagnetic Compatibility, 2024, 66(1): 224-233. doi: 10.1109/TEMC.2023.3325438
    [31]
    刘培国, 虎宁. 能量选择电磁防护方法理论与应用[J]. 电波科学学报, 2024, 39(3):385-394,431 doi: 10.12265/j.cjors.2023181

    Liu Peiguo, Hu Ning. Theory and application of energy selective electromagnetic protection method[J]. Chinese Journal of Radio Science, 2024, 39(3): 385-394,431 doi: 10.12265/j.cjors.2023181
    [32]
    Zha Song, Qu Zhuang, Zhang Jihong, et al. A gain-reconfigurable reflector antenna with surface-mounted field-induced artificial magnetic conductor for adaptive HIRF prevention[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(9): 7252-7260. doi: 10.1109/TAP.2024.3434371
    [33]
    付云起, 高冕, 陈强, 等. 透明吸波体综述[J]. 微波学报, 2022, 38(3):1-7

    Fu Yunqi, Gao Mian, Chen Qiang, et al. Overview of transparent absorbers[J]. Journal of Microwaves, 2022, 38(3): 1-7
    [34]
    田宇泽, 金晶, 杨河林, 等. 微波电磁超材料设计与应用研究进展[J]. 中国科学: 物理学 力学 天文学, 2023, 53: 290016

    Tian Yuze, Jin Jing, Yang Helin, et al. Research progress on design and application of microwave electromagnetic metamaterial[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2023, 53: 290016
    [35]
    National Science and Technology Council. Materials genome initiative for global competitiveness[R]. Washington: Office of Science and Technology Policy, 2011.
    [36]
    Merchant A, Batzner S, Schoenholz S S, et al. Scaling deep learning for materials discovery[J]. Nature, 2023, 624(7990): 80-85. doi: 10.1038/s41586-023-06735-9
    [37]
    Zeni C, Pinsler R, Zügner D, et al. A generative model for inorganic materials design[J]. Nature, 2025, 639(8055): 624-632. doi: 10.1038/s41586-025-08628-5
    [38]
    Szymanski N J, Rendy B, Fei Yuxing, et al. An autonomous laboratory for the accelerated synthesis of novel materials[J]. Nature, 2023, 624(7990): 86-91. doi: 10.1038/s41586-023-06734-w
    [39]
    Wang Zhilong, Chen An, Tao Kehao, et al. AlphaMat: a material informatics hub connecting data, features, models and applications[J]. Npj Computational Materials, 2023, 9: 130. doi: 10.1038/s41524-023-01086-5
    [40]
    Chen Ziyi, Xie Fankai, Wan Meng, et al. MatChat: a large language model and application service platform for materials science[J]. Chinese Physics B, 2023, 32: 118104. doi: 10.1088/1674-1056/ad04cb
    [41]
    Cui Tiejun, Qi Meiqing, Wan Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3: e218.
    [42]
    Zhang Qian, Wan Xiang, Liu Shuo, et al. Shaping electromagnetic waves using software-automatically-designed metasurfaces[J]. Scientific Reports, 2017, 7: 3588. doi: 10.1038/s41598-017-03764-z
    [43]
    Qiu Tianshuo, Shi Xin, Wang Jiafu, et al. Deep learning: a rapid and efficient route to automatic metasurface design[J]. Advanced Science, 2019, 6: 1900128. doi: 10.1002/advs.201900128
    [44]
    Zhang Qian, Liu Che, Wan Xiang, et al. Machine-learning designs of anisotropic digital coding metasurfaces[J]. Advanced Theory and Simulations, 2019, 2: 1800132. doi: 10.1002/adts.201800132
    [45]
    Lu Shuaihua, Zhou Qionghua, Guo Yilv, et al. Coupling a crystal graph multilayer descriptor to active learning for rapid discovery of 2D ferromagnetic semiconductors/half-metals/metals[J]. Advanced Materials, 2020, 32: 2002658. doi: 10.1002/adma.202002658
    [46]
    Hu Shengguo, Li Mingyi, Xu Jiawen, et al. Electromagnetic metamaterial agent[J]. Light: Science & Applications, 2025, 14: 12.
    [47]
    Pahlavani H, Tsifoutis-Kazolis K, Saldivar M C, et al. Deep learning for size-agnostic inverse design of random-network 3D printed mechanical metamaterials[J]. Advanced Materials, 2024, 36: 2303481. doi: 10.1002/adma.202303481
    [48]
    Qian Chao, Kaminer I, Chen Hongsheng. A guidance to intelligent metamaterials and metamaterials intelligence[J]. Nature Communications, 2025, 16: 1154. doi: 10.1038/s41467-025-56122-3
    [49]
    Yao Lixiang, Huang Xianjun, Chen Hongting, et al. A high-efficiency and effectiveness designing methodology for discrete-coded energy selective surface based on machine learning[J]. IEEE Transactions on Antennas and Propagation, 2025, 73(4): 2427-2437. doi: 10.1109/TAP.2024.3511089
    [50]
    Kingma D P, Welling M. Auto-encoding variational bayes[C]//Proceedings of the International Conference on Learning Representations. 2014.
    [51]
    Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. 2014: 2672-2680.
    [52]
    朱宏伟. 生成式人工智能与未来材料科学[J]. 自然杂志, 2024, 46(1):46-49 doi: 10.3969/j.issn.0253-9608.2024.01.005

    Zhu Hongwei. Generative artificial intelligence and future materials science[J]. Chinese Journal of Nature, 2024, 46(1): 46-49 doi: 10.3969/j.issn.0253-9608.2024.01.005
    [53]
    Scarselli F, Gori M, Tsoi A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. doi: 10.1109/TNN.2008.2005605
    [54]
    Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations. 2017.
    [55]
    Zhou Jie, Cui Ganqu, Hu Shengding, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1: 57-81. doi: 10.1016/j.aiopen.2021.01.001
    [56]
    Gilmer J, Schoenholz S S, Riley P F, et al. Neural message passing for Quantum chemistry[C]//Proceedings of the 34th International Conference on Machine Learning. 2017: 1263-1272.
    [57]
    Reiser P, Neubert M, Eberhard A, et al. Graph neural networks for materials science and chemistry[J]. Communications Materials, 2022, 3: 93. doi: 10.1038/s43246-022-00315-6
    [58]
    Ruff R, Reiser P, Stühmer J, et al. Connectivity optimized nested line graph networks for crystal structures[J]. Digital Discovery, 2024, 3(3): 594-601. doi: 10.1039/D4DD00018H
    [59]
    Sutton R S, Barto A G. Reinforcement learning: an introduction[M]. Cambridge: MIT Press, 1998.
    [60]
    Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. doi: 10.1038/nature14236
    [61]
    Arulkumaran K, Deisenroth M P, Brundage M, et al. Deep reinforcement learning: a brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26-38. doi: 10.1109/MSP.2017.2743240
    [62]
    Bassman Oftelie L, Rajak P, Kalia R K, et al. Active learning for accelerated design of layered materials[J]. npj Computational Materials, 2018, 4: 74. doi: 10.1038/s41524-018-0129-0
    [63]
    Rajak P, Wang Beibei, Nomura K I, et al. Autonomous reinforcement learning agent for stretchable kirigami design of 2D materials[J]. npj Computational Materials, 2021, 7: 102. doi: 10.1038/s41524-021-00572-y
    [64]
    Dissanayake M W M G, Phan-Thien N. Neural-network-based approximations for solving partial differential equations[J]. Communications in Numerical Methods in Engineering, 1994, 10(3): 195-201. doi: 10.1002/cnm.1640100303
    [65]
    Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
    [66]
    Karniadakis G E, Kevrekidis I G, Lu Lu, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440. doi: 10.1038/s42254-021-00314-5
    [67]
    Haghighat E, Raissi M, Moure A, et al. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113741. doi: 10.1016/j.cma.2021.113741
    [68]
    Jin Hongwei, Balaprakash P, Zou A, et al. Physics-informed heterogeneous graph neural networks for DC blocker placement[J]. Electric Power Systems Research, 2024, 235: 110795. doi: 10.1016/j.jpgr.2024.110795
    [69]
    Ren Xiaodan, Lyu Xianrui. Mixed form based physics-informed neural networks for performance evaluation of two-phase random materials[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107250. doi: 10.1016/j.engappai.2023.107250
    [70]
    Chang Huiyu, Gao Jiale, Lai Senfeng, et al. Prediction of the electromagnetic shielding effectiveness of metal grid using neural network algorithm[J]. IEEE Photonics Journal, 2021, 13: 7700106.
    [71]
    马靖男, 王蒙军, 郑宏兴, 等. 超材料吸波体的深度学习预测模型研究[J]. 电波科学学报, 2025, 40(3):494-502 doi: 10.12265/j.cjors.2025007

    Ma Jingnan, Wang Mengjun, Zheng Hongxing, et al. Research on a deep neural network-based prediction method for metamaterial absorbers[J]. Chinese Journal of Radio Science, 2025, 40(3): 494-502 doi: 10.12265/j.cjors.2025007
    [72]
    Du Wanli, Chen Guangzhi, Zhang Ziang, et al. SCS-Net: a DNN-based electromagnetic shielding effectiveness analysis method for slotted composite structures[J]. Chinese Journal of Aeronautics, 2025, 38: 103395. doi: 10.1016/j.cja.2025.103395
    [73]
    Kanmaz T B, Ozturk E, Demir H V, et al. Deep-learning-enabled electromagnetic near-field prediction and inverse design of metasurfaces[J]. Optica, 2023, 10(10): 1373-1382. doi: 10.1364/OPTICA.498211
    [74]
    Li Changfeng, Wang Ge, Peng Mengyue, et al. Reconfigurable origami/kirigami metamaterial absorbers developed by fast inverse design and low-concentration MXene inks[J]. ACS Applied Materials & Interfaces, 2024, 16(32): 42448-42460.
    [75]
    He Chenglei, Yu Liya, Jiang Yun, et al. Deep-learning approach for developing bilayered electromagnetic interference shielding composite aerogels based on multimodal data fusion neural networks[J]. Journal of Colloid and Interface Science, 2025, 688: 79-92. doi: 10.1016/j.jcis.2025.02.133
    [76]
    Jiang Xiaoqiang, Fan Wenhui, Chen Xu, et al. High accuracy inverse design of reconfigurable metasurfaces with transmission-reflection-integrated achromatic functionalities[J]. Nanophotonics, 2025, 14(7): 921-934. doi: 10.1515/nanoph-2024-0680
    [77]
    On H I, Jeong L, Jung M, et al. Optimal design of microwave absorber using novel variational autoencoder from a latent space search strategy[J]. Materials & Design, 2021, 212: 110266.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (158) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return