Turn off MathJax
Article Contents
Zhang Chaowei, Liu Xianghong, Cao Jing, et al. A study of frequency correction methods for integrally processed rectangular resonant cavities[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250192
Citation: Zhang Chaowei, Liu Xianghong, Cao Jing, et al. A study of frequency correction methods for integrally processed rectangular resonant cavities[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250192

A study of frequency correction methods for integrally processed rectangular resonant cavities

doi: 10.11884/HPLPB202537.250192
  • Received Date: 2025-06-30
  • Accepted Date: 2025-09-01
  • Rev Recd Date: 2025-09-20
  • Available Online: 2025-09-28
  • Background
    As an important part of klystrons, the characteristics of the resonant cavity have a decisive influence on the performance of klystrons. In the field of high-band klystrons, due to the limitation of processing technology and welding technology, the integrally processed rectangular resonant cavity is mostly used.
    Purpose
    The traditional integrally processed rectangular resonant cavity is prone to problems such as frequency deviation of the resonant cavity or even inoperability of the resonant cavity when frequency adjustment is performed.
    Methods
    Accordingly, this paper innovatively proposes a practical new frequency-modulation structure: a coupling diaphragm with slots cut into the resonator cavity walls and openings added.
    Results
    Simulation calculations validate that when this structure is applied to the rectangular resonant cavity, a large-scale frequency adjustment can be achieved, effectively compensating for the frequency deviation caused by the machining tolerance of parts.
    Conclusions
    During frequency tuning, applying external force deforms the diaphragm to increase cavity frequency, while enlarging the coupling aperture on the diaphragm lowers it. Moreover, the frequency adjustment operation becomes simple and rapid, significantly improving the research and development efficiency of the klystron, thus providing a new technical approach for the optimization and development of high-band klystrons.
  • loading
  • [1]
    罗芸芸, 林福民, 刘美希, 等. 用于速调管的一维光子晶体圆柱腔分析[J]. 电子器件, 2015, 38(2): 245-249

    Luo Yunyun, Lin Fumin, Liu Meixi, et al. Analysis of one-dimensional photonic crystal cylindrical cavity for klystron[J]. Chinese Journal of Electron Devices, 2015, 38(2): 245-249
    [2]
    丁耀根. 大功率速调管的技术现状和最新进展[J]. 真空电子技术, 2020(1): 1-25

    Ding Yaogen. Technical status and latest progress of high power klystrons[J]. Vacuum Electronics, 2020(1): 1-25
    [3]
    丁耀根, 刘濮鲲, 张兆传, 等. 大功率速调管的技术现状和研究进展[J]. 真空电子技术, 2010(6): 1-8,11

    Ding Yaogen, Liu Pukun, Zhang Zhaochuan, et al. The state art and research progresses of high power klystron[J]. Vacuum Electronics, 2010(6): 1-8,11
    [4]
    丁耀根, 刘濮鲲, 张兆传, 等. 真空电子学和微波真空电子器件的发展和技术现状[J]. 微波学报, 2010, 26(s1): 397-400

    Ding Yaogen, Liu Pukun, Zhang Zhaochuan, et al. The state art and development of vacuum electronics and microwave vacuum electron devices[J]. Journal of Microwaves, 2010, 26(s1): 397-400
    [5]
    刘盛纲. 太赫兹科学技术的新发展[J]. 中国基础科学, 2006, 8(1): 7-12

    Liu Shenggang. Recent development of terahertz science and technology[J]. China Basic Science, 2006, 8(1): 7-12
    [6]
    陈新桥. 一种大功率微波器件—速调管[J]. 湖北民族学院学报(自然科学版), 2001, 19(1): 70-72

    Chen Xinqiao. Klystron-a high power microwave device[J]. Journal of Hubei Minzu University (Natural Science Edition), 2001, 19(1): 70-72
    [7]
    丁耀根. 大功率速调管的理论与计算模拟[M]. 北京: 国防工业出版社, 2008

    Ding Yaogen. Theory and computer simulation of high power klystron[M]. Beijing: National Defense Industry Press, 2008
    [8]
    陈新桥, 朱允淑, 丁耀根. 高次模多注速调管的矩形双间隙输出腔的研究[J]. 电子与信息学报, 2003, 25(8): 1126-1129

    Chen Xinqiao, Zhu Yunshu, Ding Yaogen. Study of rectanglar double gap output cavity of high mode multi-beam klystron[J]. Journal of Electronics & Information Technology, 2003, 25(8): 1126-1129
    [9]
    谢家麟, 赵永翔. 速调管群聚理论[M]. 北京: 科学出版社, 1966: 10-56

    Xie Jialin, Zhao Yongxiang. Tachyon tube cluster theory[M]. Beijing: Science Press, 1966: 10-56
    [10]
    电子管设计手册编辑委员会. 大功率速调管设计手册[M]. 北京: 国防工业出版社, 1979: 1-6, 16-17, 57-58

    Electronic Tube Design Manual Editorial Board. High power klystron design manual[M]. Beijing: National Defense Industry Press, 1979: 1-6, 16-17, 57-58
    [11]
    丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社, 2010

    Ding Yaogen, Design, manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2010
    [12]
    都培伟, 杨中海, 梁源. 双间隙输出腔速调管的注波互作用程序分析[J]. 真空电子技术, 2008(6): 23-26

    Du Peiwei, Yang Zhonghai, Liang Yuan. Analysis of beam-wave interaction program of klystron with double-gap output cavity[J]. Vacuum Electronics, 2008(6): 23-26
    [13]
    付强, 王东振, 化麒, 等. 某型雷达导引头速调管故障分析及质量优化[J]. 航空维修与工程, 2021(12): 74-76

    Fu Qiang, Wang Dongzhen, Hua Qi, et al. Fault analysis and quality optimization of klystron for a certain type of radar seeker[J]. Aviation Maintenance & Engineering, 2021(12): 74-76
    [14]
    汪海洋, 李明光, 李家胤. 多注速调管双重入式谐振腔的解析计算与仿真[J]. 强激光与粒子束, 2002, 14(3): 421-425

    Wang Haiyang, Li Mingguang, Li Jiayin. Analysis and simulation for double reentrant cavity of multiple-beam klystron[J]. High Power Laser and Particle Beams, 2002, 14(3): 421-425
    [15]
    曹静, 高冬平, 时全局. 一体化矩形谐振腔加载方法研究[C]//第二十二届真空电子学学术年会论文集. 2024: 244-247

    Cao Jing, Gao Dongping, Shi Quanju. Research on loading method of integrally processed rectangular resonant cavity[C]//Proceedings of the 22nd Annual Vacuum Electronics Conference. 2024: 244-247
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (57) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return