Volume 37 Issue 10
Sep.  2025
Turn off MathJax
Article Contents
Liu Jun, Tan Xinjian, Zhou Leidang, et al. Study on differential luminescence response of organic-inorganic lead halide perovskite[J]. High Power Laser and Particle Beams, 2025, 37: 106017. doi: 10.11884/HPLPB202537.250195
Citation: Liu Jun, Tan Xinjian, Zhou Leidang, et al. Study on differential luminescence response of organic-inorganic lead halide perovskite[J]. High Power Laser and Particle Beams, 2025, 37: 106017. doi: 10.11884/HPLPB202537.250195

Study on differential luminescence response of organic-inorganic lead halide perovskite

doi: 10.11884/HPLPB202537.250195
  • Received Date: 2025-07-03
  • Accepted Date: 2025-09-07
  • Rev Recd Date: 2025-09-07
  • Available Online: 2025-09-24
  • Publish Date: 2025-10-15
  • Background
    The performance of scintillation is directly related to the photoluminescence spectrum, scintillation luminescence time, etc.
    Purpose
    In order to study the typical spectral response of the trihalide perovskite CH3NH3PbCl3 single crystal scintillator, the characteristic of differential luminescence spectrum response was found.
    Methods
    Perovskite monocrystalline samples were prepared by reversed-temperature crystal growth method. The differential luminescence spectra of CH3NH3PbCl3 were studied under different conditions, such as particle excitation, surface roughness and crystal temperature.
    Results
    The experimental results show that both the surface roughness and the crystal temperature have obvious effects on the luminescence spectrum. And the perovskite crystal exhibits different scintillation luminescence time under X-ray and laser excitations, respectively.
    Conclusions
    The differential luminescence response has been discovered under several conditions. The results can play an important supplementary role in the applied research of perovskite scintillator in X-ray detection.
  • loading
  • [1]
    易义成, 宋朝晖, 管兴胤, 等. 闪烁体电子发光非线性测量装置优化设计[J]. 现代应用物理, 2023, 14: 010202

    Yi Yicheng, Song Zhaohui, Guan Xingyin, et al. Optimized design of a facility for measuring scintillator non-proportionality[J]. Modern Applied Physics, 2023, 14: 010202
    [2]
    金鹏, 张春生, 欧阳晓平, 等. 高光产额SrI2: Eu2+晶体制备及其闪烁性能研究[J]. 现代应用物理, 2024, 15: 010202

    Jin Peng, Zhang Chunsheng, Ouyang Xiaoping, et al. Growth and scintillation properties of SrI2: Eu2+ crystal with high light yield[J]. Modern Applied Physics, 2024, 15: 010202
    [3]
    Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 505-514. doi: 10.1038/nphoton.2014.148
    [4]
    Shi Dong, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522. doi: 10.1126/science.aaa2725
    [5]
    赵鹏, 欧阳晓平. 基于漂移-扩散理论的钙钛矿太阳能电池仿真综述[J]. 现代应用物理, 2020, 11: 010101

    Zhao Peng, Ouyang Xiaoping. An overview of perovskite solar cell simulation based on drift-diffusion theory[J]. Modern Applied Physics, 2020, 11: 010101
    [6]
    Liang Yuqian, Zhao Zeqin, Hao Jinglu, et al. Interlamellar-spacing engineering of stable and toxicity-reduced 2D perovskite single crystal for high-resolution X-ray imaging[J]. Nano Letters, 2024, 24(27): 8436-8444. doi: 10.1021/acs.nanolett.4c02507
    [7]
    Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites[J]. Nature Photonics, 2015, 9(7): 444-449. doi: 10.1038/nphoton.2015.82
    [8]
    Xu Qiang, Huang Jie, Liu Jun, et al. Lead halide perovskite quantum dots based liquid scintillator for x-ray detection[J]. Nanotechnology, 2021, 32: 205201. doi: 10.1088/1361-6528/abe48a
    [9]
    Mykhaylyk V B, Krausb H, Saliba M. Bright and fast scintillation of organolead perovskite MAPbBr3 at low temperatures[J]. Materials Horizons, 2019, 6(8): 1740-1747. doi: 10.1039/C9MH00281B
    [10]
    Liu Jun, Hei Dongwei, Xu Qiang, et al. Low temperature scintillation performance of a Br-doped CH3NH3PbCl3 single-crystalline perovskite[J]. RSC Advances, 2021, 11(4): 2020-2024. doi: 10.1039/D0RA06860H
    [11]
    Maculan G, Sheikh A D, Abdelhady A L, et al. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector[J]. The Journal of Physical Chemistry Letters, 2015, 6(19): 3781-3786. doi: 10.1021/acs.jpclett.5b01666
    [12]
    Wang Lingrui, Wang Kai, Xiao Guanjun, et al. Pressure-induced structural evolution and band gap shifts of organometal halide Perovskite-based methylammonium lead chloride[J]. The Journal of Physical Chemistry Letters, 2016, 7(24): 5273-5279. doi: 10.1021/acs.jpclett.6b02420
    [13]
    唐慧丽, 刘波, 徐军, 等. 超宽禁带半导体闪烁晶体氧化镓的研究进展[J]. 现代应用物理, 2021, 12: 020101

    Tang Huili, Liu Bo, Xu Jun, et al. Research progress of ultrawide-bandgap semiconductor scintillator β-Ga2O3[J]. Modern Applied Physics, 2021, 12: 020101
    [14]
    Pankove J I. Optical processes in semiconductors[M]. Englewood Cliffs: Prentice-Hall, 1971.
    [15]
    Dar M I, Jacopin G, Meloni S, et al. Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites[J]. Science Advances, 2016, 2: e1601156. doi: 10.1126/sciadv.1601156
    [16]
    Kanemitsu Y. Luminescence spectroscopy of lead-halide perovskites: materials properties and application as photovoltaic devices[J]. Journal of Materials Chemistry C, 2017, 5(14): 3427-3437. doi: 10.1039/C7TC00669A
    [17]
    Luckey D. A fast inorganic scintillator[J]. Nuclear Instruments and Methods, 1968, 62(1): 119-120. doi: 10.1016/0029-554X(68)90628-9
    [18]
    Shah J. Ultrafast spectroscopy of semiconductors and semiconductor nanostructures[M]. 2nd ed. Heidelberg: Springer, 1999.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (101) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return