Citation: | Ren Yuanhang, Liang Lizhen, Hu Xingguang, et al. Prototype development of ion source control and acquisition system based on wireless optical communication[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250197 |
[1] |
徐川, 付恩刚, 高原, 等. 北京大学静电加速器及其应用[J]. 科学通报, 2023, 68(9): 1096-1103 doi: 10.1360/TB-2022-1132
Xu Chuan, Fu Engang, Gao Yuan, et al. Electrostatic accelerator facilities and their applications at Peking University[J]. Chinese Science Bulletin, 2023, 68(9): 1096-1103 doi: 10.1360/TB-2022-1132
|
[2] |
傅世年, 梁天骄, 陈和生. BNCT中子源的研发现况与展望[J]. 科学通报, 2022, 67(14): 1471-1478 doi: 10.1360/TB-2021-1254
Fu Shinian, Liang Tianjiao, Chen Hesheng. Status and outlook: research and development on the neutron source for BNCT[J]. Chinese Science Bulletin, 2022, 67(14): 1471-1478 doi: 10.1360/TB-2021-1254
|
[3] |
Wang Tianyu, Mao Jie, Zhang Boya, et al. Polymeric insulating materials characteristics for high-voltage applications[J]. Nature Reviews Electrical Engineering, 2024, 1(8): 516-528. doi: 10.1038/s44287-024-00070-5
|
[4] |
刘顺明, 欧阳华甫, 胡志良, 等. 硼中子俘获治疗(BNCT)真空系统[J]. 真空, 2020, 57(6): 64-68
Liu Shunming, Ouyang Huafu, Hu Zhiliang, et al. Vacuum system for Boron Neutron Capture Therapy (BNCT)[J]. Vacuum, 2020, 57(6): 64-68
|
[5] |
孙振武, 李玉晓, 姜胜南, 等. 4 MV静电加速器调试中出现的问题及解决方案[J]. 强激光与粒子束, 2005, 17(7): 1117-1120
Sun Zhenwu, Li Yuxiao, Jiang Shengnan, et al. Debugging of 4 MV electrostatic accelerator[J]. High Power Laser and Particle Beams, 2005, 17(7): 1117-1120
|
[6] |
王鹏鹏, 张玮, 武启, 等. 锦屏深地强流离子源控制系统的研制[J]. 强激光与粒子束, 2023, 35: 104001 doi: 10.11884/HPLPB202335.220356
Wang Pengpeng, Zhang Wei, Wu Qi, et al. Development of control system for JUNA ion source[J]. High Power Laser and Particle Beams, 2023, 35: 104001 doi: 10.11884/HPLPB202335.220356
|
[7] |
Ding Jupeng, Liu Wenwen, I C L, et al. Advanced progress of optical wireless technologies for power industry: an overview[J]. Applied Sciences, 2020, 10: 6463. doi: 10.3390/app10186463
|
[8] |
李日正, 倪国华, 孙红梅, 等. 感应耦合等离子体离子源放电特性仿真研究[J]. 真空科学与技术学报, 2024, 44(9): 819-824
Li Rizheng, Ni Guohua, Sun Hongmei, et al. Simulation of discharge characteristics of inductively coupled plasma ion source[J]. Chinese Journal of Vacuum Science and Technology, 2024, 44(9): 819-824
|
[9] |
李帅, 孟献才, 钱玉忠. 紧凑型电感耦合加速器中子源控制系统设计[J]. 工业控制计算机, 2025, 38(4): 4-5,8 doi: 10.3969/j.issn.1001-182X.2025.04.002
Li Shuai, Meng Xiancai, Qian Yuzhong. Design of compact inductively coupled accelerator neutron source control system[J]. Industrial Control Computer, 2025, 38(4): 4-5,8 doi: 10.3969/j.issn.1001-182X.2025.04.002
|
[10] |
Zhang Jiawen, Lin Zhenhui, Hu Jie, et al. Design of readout and characterization system for multi-pixel superconducting terahertz MKIDs[J]. Research in Astronomy and Astrophysics, 2025, 25: 045002. doi: 10.1088/1674-4527/adbd9e
|
[11] |
熊绪文, 孟献才, 洪兵, 等. 基于ZYNQ的γ能谱采集系统研制[J]. 核电子学与探测技术, 2024, 44(6): 1069-1077 doi: 10.3969/j.issn.0258-0934.2024.06.014
Xiong Xuwen, Meng Xiancai, Hong Bing, et al. Development of a gamma spectrum acquisition system based on ZYNQ[J]. Nuclear Electronics & Detection Technology, 2024, 44(6): 1069-1077 doi: 10.3969/j.issn.0258-0934.2024.06.014
|
[12] |
Zayed A, Trabes E, Tarrillo J, et al. Efficient embedded system for drowsiness detection based on EEG signals: features extraction and hardware acceleration[J]. Electronics, 2025, 14: 404. doi: 10.3390/electronics14030404
|
[13] |
Oleszek M, Rymarczyk T, Adamkiewicz P. Next generation of hybrid tomograph for acquisition of measurement data[C]//Proceedings of 2019 Applications of Electromagnetics in Modern Engineering and Medicine (PTZE). 2019: 125-129.
|
[14] |
Mauch S, Reger J, Reinlein C, et al. FPGA-accelerated adaptive optics wavefront control[C]//Proceedings of SPIE 8978, MEMS Adaptive Optics VIII. 2014: 897802.
|
[15] |
李涛. 面向超快激光的高精度温控驱动系统及其应用[D]. 南京: 南京信息工程大学, 2024: 42-45
Li Tao. High-precision temperature control drive system for ultrafast lasers and its applications[D]. Nanjing: Nanjing University of Information Science and Technology, 2024: 42-45
|
[16] |
关鑫. 固体火箭发动机尾焰红外亮度光纤测试系统研制[D]. 哈尔滨: 哈尔滨工业大学, 2024: 33-58
Guan Xin. Development of optical fiber testing system for solid rocket motor tail flame infrared brightness[D]. Harbin: Harbin Institute of Technology, 2024: 33-58
|
[17] |
Xiao Yang, Ai Jiakang, Chen Xiangyang, et al. 30 Gbps visible light communication in rainy environments based on laser diodes[J]. Chinese Optics Letters, 2025, 23: 060604. doi: 10.3788/COL202523.060604
|
[18] |
姚琰昕. 基于LED阵列光源的QAM-OFDM水下无线光通信系统研究[D]. 大连: 大连理工大学, 2022: 30-55
Yao Yanxin. Research on QAM-OFDM underwater wireless optical communication system based on LED array light source[D]. Dalian: Dalian University of Technology, 2022: 30-55
|
[19] |
李璞. 面向深海应用的水下无线光通信调制技术研究[D]. 西安: 西安电子科技大学, 2021: 41-55
Li Pu. Research on the modulation technology of underwater wireless optical communication for deep sea applications[D]. Xi'an: Xidian University, 2021: 41-55
|
[20] |
王楚鸣, 洪涛, 钟志伟, 等. 基于Chirp波形的物联信号在低轨卫星信道上的适应性分析[J]. 无线电通信技术, 2024, 50(4): 739-749 doi: 10.3969/j.issn.1003-3114.2024.04.016
Wang Chuming, Hong Tao, Zhong Zhiwei, et al. Adaptive analysis of IoT signals based on Chirp modulation in low earth orbit satellite channels[J]. Radio Communications Technology, 2024, 50(4): 739-749 doi: 10.3969/j.issn.1003-3114.2024.04.016
|